Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Polscy fizycy zbadali plazmę kwarkowo-gluonową i wyjaśnili różnice między teorią a obserwacjami
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Naukowcy z NASA napotkali na zadziwiająco masywną czarną dziurę. Jej odkrycie każe ponownie zastanowić się nad teoriami dotyczącymi ewolucji gwiazd.
Wspomniana czarna dziura jest częścią galaktyki M33, która znajduje się w odległości 3 milionów lat świetlnych od Ziemi. Dane z Chandra X-ray Observatory i teleskopu Gemini wykazały, iż czarna dziura w układzie podwójnym M33 X-7 jest 15,7 razy bardziej masywna niż Słońce. Tym samym jest to najbardziej masywna znana nam gwiazdowa czarna dziura.
Odkrycie stawia zupełnie nowe pytania o formowanie się czarnych dziur – mówi Jerome Orosz z San Diego State University, jeden z odkrywców M33 X-7.
Czarna dziura znajduje się w pobliżu towarzyszącej jej gwiazdy, która ma również olbrzymią masę, jest 70 razy cięższa od Słońca. To z kolei najcięższa gwiazda w binarnym systemie, w skład którego wchodzi czarna dziura. Wspomniana gwiazda krąży wokół czarnej dziury przesłaniając ją co trzy i pół doby. To jedyna znana nam czarna dziura w systemie binarnym, która ulega zaćmieniom. Dzięki nim możliwe jest precyzyjne określenie jej masy.
To olbrzymia gwiazda, której towarzyszy olbrzymia czarna dziura. W przyszłości gwiazda prawdopodobnie zmieni się w supernową i z czasem powstanie para czarnych dziur – stwierdził Jeffrey McClintock z Harvard-Smithsonian Center of Astrophysics.
Ewolucja systemu binarnego M33 X-7 jest trudna do przestawienia, gdyż nie zgadza się ze współczesnymi teoriami.
Otóż gwiazda, z której powstała czarna dziura, musiałaby mieć masę większą, niż istniejąca jeszcze gwiazda wchodząca w skład systemu binarnego. To właśnie przez to, iż jej masa była większa, jako pierwsza zmieniła się w czarną dziurę. Tu powstaje jednak pewien problem. Otóż średnica tej gwiazdy byłaby wówczas większa, niż obecna odległość pomiędzy czarną dziurą a istniejącą gwiazdą. Oznaczałoby to, iż gwiazdy miałyby wspólną część zewnętrznego płaszcza. To z kolei powinno spowodować tak znacznie straty w masie takiego systemu, że niemożliwe byłoby powstanie tak masywnej czarnej dziury, jaką odkryto.
Powstanie takiej dziury byłoby możliwe jedynie wówczas, gdyby gwiazda, z której czarna dziura się narodziła, traciła masę 10-krotnie wolniej, niż przewidują współczesne modele astronomiczne.
Jednak takie wolniejsze tracenie masy mogłoby wyjaśniać inne zjawisko, które wcześniej zaobserwowano. Otóż ostatnio astronomowie zauważyli niezwykle jasną supernową SN 2006gy. Gwiazda, która zmieniła się w supernową było 150-krotnie cięższa od Słońca. Oznacza to, że pod koniec swojego życia gwiazdy mogą być znacznie bardziej masywne, niż przewidują współczesne teorie. Innymi słowy, wolniej tracą masę, niż dotychczas sądzono.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Po wielkiej pompie publicznej prezentacji pierwszych zdjęć z Teleskopu Kosmicznego Jamesa Webba nadszedł czas codziennej pracy. W ramach trwającego właśnie 1. Cyklu obserwacyjnego Space Telescope Science Institute rozdysponował około 6000 godzin czasu obserwacyjnego. Naukowcy z całego świata od długiego czasu mogli wnioskować o przyznanie im możliwości skorzystania z teleskopu.
Wielu specjalistów chce dokładniej zbadać planety pozasłoneczne. Drake Deming z University of Maryland będzie badał skład molekularny atmosfery planety HD 189733b, a naukowcy z Instytutu Astronomii im. Maxa Plancka mają zamiar przeprowadzić podobne badania w odniesieniu do gorącego Jowisza WASP-121b. Interesujące wyniki mogą dać badania składu atmosfery podobnej do Ziemi egzoplanety GI486b, które planuje wykonać Megan Mansfield z University of Arizona. Z kolei Christine Chen z Uniwersytetu Johnsa Hopkinsa chce poszukać odpowiedników Pasa Kuipera w pozasłonecznych układach planetarnych.
Popularnością cieszą się też badania całych galaktyk. Naukowcy chcą scharakteryzować ultrajasne galaktyki z początków istnienia wszechświata, mają zamiar zbadać emisję z kwazarów z okresu formowania się galaktyk, a Helmut Dannerbauer z Instituto de Astrofisica de Canarias chce zajrzeć do wypełnionego pyłem wnętrza tworzącej się gromady galaktyk Spiderweb.
Niektórzy naukowcy mają zamiar w swojej pracy sięgnąć aż do epoki rejonizacji, która rozpoczęła się około 150 milionów lat po Wielkim Wybuchu. W epoce tej wodór został ponownie zjonizowany. Było to jedno z najważniejszych wydarzeń ery materii, które zakończyło tzw. wieki ciemne w historii wszechświata. Naukowcy z Kalifornii chcą badać echa kwazarów z tego okresu, a Johna Chisholma z Arizony interesuje jonizująca jasność galaktyk. z kolei Anson D'Aloisio otrzymał czas obserwacyjny na potrzeby zbadania pierwszych zjonizowanych bąbli gazowych.
Wielu naukowców interesuje jednak nasze najbliższe sąsiedztwo. Webb zostanie wykorzystany przez nich do poszukiwań 10-kilometrowych obiektów transneptunowych, badania atmosfery Neptuna i systemu klimatycznego Plutona. Badane będą związki lotne w główny pasie asteroid, a Larissa Markwardt ma zamiar przeprowadzić pierwsze badania spektroskopowe w bliskiej podczerwieni planetoid trojańskich na orbicie Neptuna.
Jeszcze inni uczeni wykorzystają Webba do zbadania początków Mgławicy Kraba, emisji energii i materiału z supernowej SN 1987A, najjaśniejszej supernowej od 1604 roku czy spróbują opisać formacje pyłu w prymitywnych środowiskach. Spora część czasu obserwacji zostanie przeznaczona na badanie czarnych dziur. Chi-kwan Chan i Andreas Gaspar chcą zbadać emisję w ultrafiolecie z centralnej czarnej dziury Drogi Mlecznej, Sagittariusa A*, a Anil Seth będzie przyglądał się aktywnym jądrom galaktyk o niskiej jasności.
Webb otwiera przed światem nauki całkowicie nowe możliwości. Astronomowie będą mogli korzystać z nich być może nawet przez 20 lat. Dzięki idealnemu wystrzeleniu teleskopu nie musiał on bowiem zużywać paliwa na liczne korekty kursu i już teraz wiemy, że wystarczy mu go na ponad 20 lat pracy.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Międzynarodowy zespół naukowy, na którego czele stoją uczeni z Holandii, informuje, że nie znalazł śladów ciemnej materii w galaktyce AGC 114905. Obecnie powszechne jest przekonanie, że galaktyki mogą istnieć wyłącznie dzięki ciemnej materii, której oddziaływanie utrzymuje je razem.
Przed dwoma laty Pavel Mancera Piña i jego zespół z Uniwersytetu w Groningen poinformowali o zidentyfikowaniu sześciu galaktyk, zawierających niewiele lub nie zawierających w ogóle ciemnej materii. Wówczas usłyszeli od swoich kolegów, by lepiej poszukali, a przekonają się, że musi tam ona być. Teraz, po prowadzonych przez 40 godzin obserwacjach za pomocą Very Large Array (VLA) uczeni potwierdzili to, co zauważyli wcześniej – istnienie galaktyk bez ciemnej materii.
AGC 114905 znajduje się w odległości 250 milionów lat świetlnych od Ziemi. To skrajnie rozproszona galaktyka (UDG – ultra diffuse galaxy) karłowata, ale określenie „karłowata” odnosi się w jej przypadku do jasności, a nie wielkości. Galaktyka jest bowiem wielkości Drogi Mlecznej, ale zawiera około 1000-krotnie mniej gwiazd. Przeprowadzone obserwacje i analizy przeczą przekonaniu, jakoby wszystkie galaktyki, a już na pewno karłowate UDG, mogły istnieć tylko dzięki utrzymującej je razem ciemnej materii.
Pomiędzy lipcem a październikiem 2020 roku naukowcy przez 40 godzin zbierali za pomocą VLA dane dotyczące ruchu gazu w tej galaktyce. Na podstawie obserwacji stworzyli grafikę pokazującą odległość gazu od galaktyki na osi X oraz jego prędkość obrotową na osi Y. To standardowy sposób badania obecności ciemnej materii. Tymczasem analiza wykazała, że ruch gazu w AGC 114905 można całkowicie wyjaśnić odwołując się wyłącznie do widocznej materii.
Tego oczekiwaliśmy i spodziewaliśmy się, gdyż potwierdza to nasze wcześniejsze obserwacje. Problem jednak pozostaje, gdyż obecnie obowiązujące teorie mówią, że AGC 114905musi zawierać ciemną materię. Nasze obserwacje wskazują, że jej tam nie ma. Po kolejnych badaniach mamy zatem coraz większą rozbieżność między teorią a obserwacjami, stwierdza Pavel Mancera Piña.
Naukowcy próbują więc wyjaśnić, co stało się z ciemną materią. Wedle jednej z wysuniętych przez nich hipotez, AGC 114905 mogłaby zostać pozbawiona ciemnej materii przez wielkie sąsiadujące z nią galaktyki. Problem w tym, że nie ma takich galaktyk. Zeby wyjaśnić ten brak ciemnej materii na gruncie powszechnie akceptowanego modelu kosmologicznego Lambda-CDM musielibyśmy wprowadzić do niego parametry o ekstremalnych wartościach, znajdujących się daleko poza akceptowanym zakresem. Również na gruncie alternatywnego modelu – zmodyfikowanej dynamiki newtonowskiej – nie jesteśmy w stanie wyjaśnić ruchu gazu w tej galaktyce.
Uczeni mówią, że istnieje pewne założenie, które mogłoby zmienić wnioski z ich badań. Założeniem tym jest kąt, pod jakim sądzą, że obserwowali AGC 114905. Jednak kąt ten musiałby się bardzo mocno różnić od naszych założeń, by we wnioskach było miejsce na istnienie ciemnej materii, mówi współautor badań Tom Oosterloo. Tymczasem zespół badań kolejną UDG. Jeśli i tam nie znajdzie śladów ciemnej materii, będzie to bardzo silnym potwierdzeniem dotychczasowych spostrzeżeń.
Warto tutaj przypomnieć, że już 3 lata temu donosiliśmy, że zespół z Yale University odkrył pierwszą galaktykę bez ciemnej materii. Metoda wykorzystana przez Holendrów jest bardziej wiarygodna i odporna na zakłócenia.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wulkaniczne szczyty Hawajów, pustynia Atacama w Chile i góry Wysp Kanaryjskich to najlepsze na Ziemi miejsca do uprawiania astronomii. To tam znajdują się najbardziej zaawansowane teleskopy. Teraz nauka może zyskać kolejne takie idealne miejsce. Chińscy specjaliści poinformowali, że znajduje się ono w pobliżu miasta Lenghu w prowincji Qinghai.
Wyżyna Tybetańska ma wiele zalet z punktu widzenia astronomii. Jest położona wysoko nad poziomem morza, jest tam niewielkie zanieczyszczenie sztucznym światłem i niska wilgotność. Astronomowie od wielu lat mieli nadzieję, że uda się na niej zlokalizować miejsce nadające się do prowadzenia obserwacji. Jednak warunki środowiskowe powodują, że prowadzenie zaawansowanych badań astronomicznych byłoby tam zbyt trudne lub niemożliwe. Opinie takie są tym bardziej uzasadnione, że przed kilkunastu laty prowadzono badania w Ngari, Muztagh Ata i Daocheng. Żadne z tych miejsce nie miało warunków dobrych dla astronomii. Wielu specjalistów uważa też, że przechodzące w pobliżu Lenghu burze piaskowe wykluczają ten obszar jako miejsce wybudowania wielkich teleskopów.
Jednak Licai Deng i jego koledzy z Narodowych Obserwatoriów Astronomicznych Chin Chińskiej Akademii Nauk postanowili spróbować szczęścia. Od 2018 roku monitorują zachmurzenie, jasność nocnego nieba, temperaturę powietrza, wilgotność oraz siłę i kierunek wiatru wiejącego na wierzchołku C góry Saishiteng, położonego na wysokości 4200 m. n.p.m.
Naukowcy stwierdzili, że podczas około 70% nocy niebo jest na tyle wolne od chmur, że można prowadzić obserwacje. Jeśli zaś chodzi o widzialność (seeing), czyli kluczowy parametr określający, w jaki stopniu turbulencje atmosfery prowadzą do rozmazywania się obrazu gwiazd, to mediana wzdłuż promienia świetlnego wynosi 0,75 sekundy kątowej, czyli 1/4800 stopnia. Mediana nocnych zmian temperatury na szczycie to 2,4 stopnia Celsjusza, a opad pary wodnej jest przeważnie nie większy niż 2 mm.
Parametry na wierzchołku C Saishiteng są więc porównywalne do tak znanych miejsc prowadzenia obserwacji astronomicznych jak Manua Kea na Hawajach, Cerro Paranal w Chile czy La Palma na Wyspach Kanaryjskich. To właśnie tam znajdują się najpotężniejsze ziemskie teleskopy. Badane przez Chińczyków miejsce wydaje się mieć też kilka wyjątkowych zalet. Jedną z nich są niewielkie fluktuacje temperatury, co wskazuje na bardzo stabilne powietrze. Kolejna zaleta to fakt, że w zimie temperatura spada tam poniżej -20 stopni Celsjusza, co czyni Saishiteng świetnym miejscem dla obserwacji w podczerwieni. A niewielka ilość pary wodnej oznacza, że może być to idealne miejsce dla urządzeń działających w paśmie teraherców, za pomocą których badany jest ośrodek międzygwiezdny, co pozwala na lepsze zrozumienie pochodzenia gwiazd, galaktyk i samego wszechświata.
Chiny mają spore ambicje odnośnie badań astronomicznych. Jednak Państwo Środka wyraźnie odstaje od innych. Znajduje się tam niewiele większych teleskopów, a głównym problemem jest właśnie brak dobrego miejsca do obserwacji. Dlatego też chińskie środowisko naukowe już chce rozpocząć prace nad teleskopami, które staną na Saishiteng. Uniwersytet Nauki i Technologii buduje właśnie teleskop optyczny o aperturze 2,5 metra, który ma rozpocząć pracę w 2023 roku. Pojawiły się też propozycje budowy obserwatorium słonecznego i zespołu teleskopów o nazwie Near Earth Object Hunter. Całe chińskie środowisko astronomiczne zaproponowało też rządowi w Pekinie budowę teleskopu o aperturze 12 metrów.
Chińczycy mają nadzieję, że w Saishiteng w przyszłości staną międzynarodowe teleskopy. Dobre miejsca do obserwacji astronomicznych zawsze są w cenie. A ostatnio stały się jeszcze bardziej cenne, gdyż rdzenni mieszkańcy Hawajów nie chcą, by na Mauna Kea powstawały kolejne teleskopy.
Nowe miejsce nie tylko przysłużyłoby się nauce, wypełniło istniejącą lukę jeśli chodzi o obserwatoria na wschodniej półkuli, ale byłoby też niezwykle ważne z punktu widzenia Chin. Pozwoliłoby ono zwiększyć współpracę Państwa Środka z międzynarodowym środowiskiem naukowym.
Historia badań wierzchołka C Saishiteng pod kątem przydatności dla astronomii sięga roku 2017, kiedy to Licai Deng stwierdził, że rosnące zanieczyszczenie sztucznym światłem znacznie utrudnia mu obserwacje. Zaczął poszukiwać innego miejsca. Został wówczas zaproszony przez władze miasta Lenghu do oceny warunków na Saishiteng. Lenghu było w przeszłości 100-tysięcznym miastem, którego gospodarka opierała się na polach naftowych. Gdy jednak ropa się skończyła, pozostało kilkuset mieszkańców.
Deng podpisał pięcioletni kontrakt, w ramach którego miał sprawdzić warunki panujące na górze Saishiteng, na którą nikt wcześniej się nie wspinał. Gdy uczony wraz z zespołem weszli na szczyt, okazało się, że główne obawy astronomów dotyczące tego miejsca – dotyczące burz piaskowych – są bezpodstawne. Piasek pozostał poniżej. Niebo oczyszczało się na wysokości 3800–4000 metrów. A 200 metrów wyżej, tam, gdzie można by prowadzić obserwacje, piasek nie stanowił problemu. "Nikt nie mógł tego wiedzieć bez wdrapania się na szczyt", stwierdził uczony.
Deng i jego koledzy dziesiątki razy wspinali się na szczyt, wnosząc tam sprzęt. Miejscowe władze wynajęły śmigłowiec, by im pomóc i rozpoczęły budowę drogi, która po 18 miesiącach dotarła do wierzchołka C. Deng przeniósł tam swój teleskop, a władze wprowadziły już zakaz zanieczyszczania sztucznym światłem obszaru 18 000 kilometrów kwadratowych wokół wierzchołka.
Licai Deng i jego zespół opublikowali wyniki swoich badań na łamach Nature.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.