Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Lądy pojawiły się 500 milionów lat wcześniej niż sądzono?
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Oceany pochłaniają około 26% dwutlenku węgla emitowanego przez człowieka. Są więc niezwykle ważnym czynnikiem zmniejszającym nasz negatywny wpływ na atmosferę. Większość tego węgla – około 70% – wykorzystuje fitoplankton i inne organizmy żywe. Gdy one giną, resztki ich ciał opadają w postaci przypominającej płatki śniegu. Ten zawierający węgiel „śnieg” zalega na dnie, jest przykrywany osadami i pozostaje bezpiecznie zamknięty na bardzo długi czas, nie trafiając z powrotem do atmosfery. Jednak badania, których wyniki ukazały się właśnie na łamach Science wskazują, że proces ten nie wygląda tak prosto, jak byśmy chcieli.
Grupa naukowców z Uniwersytetu Stanforda, Woods Hole Oceanographic Institution oraz Rutgers University zbudowała specjalny mikroskop, potocznie nazwany Gravity Machine, który pozwala badać mikroorganizmy i inne niewielkie elementy występujące w kolumnie wody o dowolnej długości. Okazało się, że „morski śnieg” nie opada na dno tak szybko, jak sądziła nauka. Mikroskop pozwolił na symulowanie zachowania „śniegu” w środowisku naturalnym i okazało się, że „płatki śniegu” ciągną za sobą śluzowe warkocze, która spowalniają ich opadanie. Czasem warkocze te całkowicie uniemożliwiają opadnięcie i „śnieg” pozostaje zawieszony w górnych częściach kolumny wody. Żyjące tam organizmy mogą go pochłaniać i w procesie oddychania wydalić do wody znajdujący się tam węgiel, a to z kolei zmniejsza tempo pochłaniania przez ocean CO2 z atmosfery.
Mikroskop, za pomocą którego prowadzono badania, wykorzystuje koło o średnicy kilkunastu centymetrów. Do koła naukowcy wlewali wodę pobraną w oceanie na różnych głębokościach. Koło się obracało, a obecne w wodzie mikroorganizmy mogły swobodnie opadać pod wpływem grawitacji. Dzięki ruchowi obrotowemu koła, mikroorganizmy mogły bez końca opadać, w ten sposób możliwe jest symulowanie opadania na dowolną odległość. Temperatura, oświetlenie i ciśnienie wewnątrz koła dobiera jest odpowiednio do symulowanej głębokości, na której „znajduje się” badana próbka. Jednocześnie to, co dzieje się w próbce jest bez przerwy monitorowane za pomocą mikroskopu.
Dzięki takiej konstrukcji instrumentu badawczego zauważono, że poszczególne „płatki śniegu” tworzą, niewidoczną goły okiem, śluzowatą strukturę ciągnącą się na podobieństwo warkocza komety. Odkrycia warkocza dokonano, gdy do próbki dodano niewielkie mikrokoraliki, by zbadać, jak będą one przepływały wokół „płatków”. Zauważyliśmy, że koraliki utknęły w czymś niewidzialnym, co ciągnęło się za płatkami, mówi jeden z badaczy. Bliższe badania pokazały, że ten śluzowaty warkocz dwukrotnie wydłuża czas pobytu „płatków” w górnych 100 metrach kolumny wody.
Odkrycie pokazuje, że proces pochłaniania węgla przez oceany jest bardziej złożony niż sądziliśmy. Jest jednak mało prawdopodobne, by oznaczało ono, że oceany pochłaniają mniej węgla, niż sądzimy. Ilość tego węgla została bowiem określona metodami empirycznymi, więc wpływ warkocza został - choć nieświadomie - uwzględniony.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Jeszcze do niedawna naukowcy potrafili określi miejsce pochodzenia jedynie 6% meteorytów znalezionych na Ziemi. Teraz naukowcy z francuskiego Narodowego Centrum Badań Naukowych (CNRS), Europejskiego Obserwatorium Południowego i czeskiego Uniwersytetu Karola wykazali, że 70% wszystkich znalezionych na naszej planecie meteorytów pochodzi z trzech młodych rodzin asteroid.
Rodziny te to wyniki trzech zderzeń, do których doszło w głównym pasie asteroid 5,8, 7,5 oraz 40 milionów lat temu. Badacze określili też źródło innych meteorytów, dzięki czemu możemy teraz zidentyfikować miejsce pochodzenia ponad 90% skał, które z kosmosu spadły na Ziemię. Wyniki badań zostały opublikowane w trzech artykułach. Jeden ukazał się łamach Astronomy and Astrophysics, a dwa kolejne na łamach Nature.
Wspomniane rodziny asteroid to – od najmłodszej do najstarszej – Karin, Koronis i Massalia. Wyróżnia się Massalia, która jest źródłem 37% meteorytów. Dotychczas na Ziemi odnaleziono podczas 700 000 okruchów z kosmosu. Jedynie 6% z nich zidentyfikowano jako achondryty pochodzące z Księżyca, Marsa lub Westy, jednego z największych asteroid głównego pasa. Źródło pozostałych 94%, z których większość do chondryty, pozostawało nieznane.
Jak to jednak możliwe, że źródłem większości znalezionych meteorytów są młode rodziny asteroid? Autorzy badań wyjaśniają, że rodziny takie charakteryzują się dużą liczbą niewielkich fragmentów powstałych w wyniku niedawnych kolizji. Ta obfitość zwiększa prawdopodobieństwo kolejnych zderzeń, co w połączeniu z duża mobilnością tych szczątków, powoduje, że mogą zostać wyrzucone z głównego pasa asteroid, a część z nich poleci w kierunku Ziemi. Starsze rodziny asteroid nie są tak liczne. Przez wiele milionów lat mniejsze fragmenty, ale na tyle duże, że mogłyby spaść na Ziemię, zniknęły w wyniku kolejnych zderzeń i ucieczki z pasa asteroid.
Określenie pochodzenia większości meteorytów było możliwe dzięki teleskopowym badaniom składu większości rodzin asteroid w głównym pasie oraz zaawansowanymi symulacjami komputerowymi, podczas których badano dynamikę tych rodzin.
Autorzy badań określili też pochodzenie wielkich asteroid, takich jak Ryugu czy Bennu. Okazało się, że pochodzą one od tego samego przodka co rodzina asteroid Polana.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Nowa krzywa globalnych temperatur wskazuje, że w fanerozoiku średnie temperatury na Ziemi zmieniały się bardziej niż przypuszczano. Naukowcy z University of Arizona i Smithsonian Institution przeprowadzili badania, w ramach których zrekonstruowali temperatury w ciągu ostatnich 485 milionów lat. To okres, w którym życie na naszej planecie zróżnicowało się, podbiło lądy i przetrwało liczne okresy wymierania.
Fanerozoik rozpoczyna się eksplozją kambryjską sprzed około 540 milionów lat i trwa do dzisiaj. Naukowcy w swoich badaniach ograniczyli się do 485 milionów lat, ze względu na niedostateczną ilość starszych danych geologicznych. Trudno jest znaleźć tak stare skały, w których zachował się zapis o panujących temperaturach. Nie mamy ich zbyt wielu nawet dla 485 milionów lat temu. To ogranicza nasze cofanie się w czasie, mówi profesor Jessica Tierney z Arizony.
Uczeni wykorzystali asymilację danych, w trakcie której połączyli zapis geologiczny z modelami klimatycznymi. Badania pozwoliły im lepiej zrozumieć, czego możemy spodziewać się w przyszłości. Jeśli badasz ostatnich kilka milionów lat, to nie znajdziesz niczego, co może być analogią dla zjawisk, jakich spodziewamy się w roku 2100 czy 2500. Trzeba cofnąć się znacznie dalej, gdy Ziemia była naprawdę gorąca. Tylko tak możemy zrozumieć zmiany, jakie mogą zajść w przyszłości, wyjaśnia Scott Wing, kurator zbiorów paleobotaniki w Smithsonian National Museum of Natural History.
Nowa krzywa temperatury pokazuje, że w tym czasie średnie temperatury na Ziemi zmieniały się w zakresie od 11,1 do 36,1 stopnia Celsjusza, a okresy wzrostu temperatur były najczęściej skorelowane ze zwiększoną emisją dwutlenku węgla do atmosfery. To jasno pokazuje, że dwutlenek węgla jest głównym czynnikiem kontrolującym temperatury na Ziemi. Gdy jest go mało, temperatury są niskie, gdy jest go dużo, na Ziemi jest gorąco, dodaje Tierney.
Badania pokazały też, że obecnie średnia temperatura jest niższa niż średnia dla większości fanerozoiku. Jednocześnie jednak antropogeniczne emisje CO2 powodują znacznie szybszy wzrost temperatury niż w jakimkolwiek momencie z ostatnich 485 milionów lat. To stwarza duże zagrożenie dla wielu gatunków roślin i zwierząt. Niektóre okresy szybkich zmian klimatycznych wiązały się z masowym wymieraniem.
Badacze zauważają, że ocieplenie klimatu może być też niebezpieczne dla ludzi. Nasz gatunek doświadczył w swojej historii zmian średnich temperatur o około 5 stopni Celsjusza. To niewiele, jak na 25-stopniową zmianę w ciągu ostatnich 485 milionów lat. Wyewoluowaliśmy w chłodnym okresie, który nie jest typowy dla większości geologicznej historii. Zmieniamy klimat w sposób, który wykracza poza to, czego doświadczyliśmy. Planeta była i może być cieplejsza, ale ludzie i zwierzęta nie zaadaptują się do tak szybkich zmian, dodaje Tierney.
Projekt zbadania temperatur w fanerozoiku rozpoczął się w 2018 roku, gdy pracownicy Smithsonian National Museum postanowili zaprezentować zwiedzającym krzywą temperatur z całego eonu. Badacze wykorzystali pięć różnych chemicznych wskaźników temperatury zachowanych w skamieniałym materiale organicznym. Na ich podstawie oszacowali temperaturę w 150 000 krótkich okresach czasu. Jednocześnie współpracujący z nimi naukowcy z University of Bristol – na podstawie rozkładu kontynentów i składu atmosfery – stworzyli ponad 850 symulacji temperatur w badanym czasie. Następnie autorzy badań połączyli oba zestawy danych, tworząc najbardziej precyzyjną krzywą temperatur dla ostatnich 485 milionów lat.
Dodatkową korzyścią z badań jest stwierdzenie, że czułość klimatu – czyli przewidywana zmiana średniej temperatury na Ziemi przy dwukrotnej zmianie stężenia CO2 – jest stała. Dwutlenek węgla i temperatury są nie tylko blisko powiązane, ale są powiązane w ten sam sposób przez 485 milionów lat. Nie zauważyliśmy, by czułość klimatu zmieniała się w zależności od tego, czy jest zimno czy gorąco, dodaje Tierney.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wszystkie organizmy żywe wykorzystują metale w czasie podstawowych funkcji życiowych, od oddychania po transkrypcję DNA. Już najwcześniejsze organizmy jednokomórkowe korzystały z metali, a metale znajdziemy w niemal połowie enzymów. Często są to metale przejściowe. Naukowcy z University of Michigan, California Institute of Technology oraz University of California, Los Angeles, twierdzą, że żelazo było tym metalem przejściowym, który umożliwił powstanie życia.
Wysunęliśmy radykalną hipotezę – żelazo było pierwszym i jedynym metalem przejściowym wykorzystywanym przez organizmy żywe. Naszym zdaniem życie oparło się na tych metalach, z którymi mogło wchodzić w interakcje. Obfitość żelaza w pierwotnych oceanach sprawiła, że inne metale przejściowe były praktycznie niewidoczne dla życia, mówi Jena Johnson z University of Michigan.
Johnson połączyła siły z profesor Joan valentine z UCLA i Tedem Presentem z Caltechu. Profesor Valentine od dawna bada, jakie metale wchodziły w skład enzymów u wczesnych form życia, umożliwiając im przeprowadzanie niezbędnych procesów życiowych. Od innych badaczy wielokrotnie słyszała, że przez połowę historii Ziemi oceany były pełne żelaza. W mojej specjalizacji, biochemii i biochemii nieorganicznej, w medycynie i w procesach życiowych, żelazo jest pierwiastkiem śladowym. Gdy oni mi powiedzieli, że kiedyś nie było pierwiastkiem śladowym, dało mi to do myślenia, mówi uczona.
Naukowcy postanowili więc sprawdzić, jak ta obfitość żelaza w przeszłości mogła wpłynąć na rozwój życia. Ted Present stworzył model, który pozwolił na sprecyzowanie szacunków dotyczących koncentracji różnych metali w ziemskich oceanach w czasach, gdy rozpoczynało się życie. Najbardziej dramatyczną zmianą, jaka zaszła podczas katastrofy tlenowej, nie była zmiana koncentracji innych metali, a gwałtowny spadek koncentracji żelaza rozpuszczonego w wodzie. Nikt dotychczas nie badał dokładnie, jaki miało to wpływ na życie, stwierdza uczona.
Badacze postanowili więc sprawdzić, jak przed katastrofą tlenową biomolekuły mogły korzystać z metali. Okazało się, że żelazo spełniało właściwie każdą niezbędną rolę. Ich zdaniem zdaniem, ewolucja może korzystać na interakcjach pomiędzy jonami metali a związkami organicznymi tylko wówczas, gdy do interakcji takich dochodzi odpowiednio często. Obliczyli maksymalną koncentrację jonów metali w dawnym oceanie i stwierdzili, że ilość jonów innych biologiczne istotnych metali była o całe rzędy wielkości mniejsza nią ilość jonów żelaza. I o ile interakcje z innymi metalami w pewnych okolicznościach mogły zapewniać ewolucyjne korzyści, to - ich zdaniem - prymitywne organizmy mogły korzystać wyłącznie z Fe(II) w celu zapewnienia sobie niezbędnych funkcji spełnianych przez metale przejściowe.
Valentine i Johnson chciały sprawdzić, czy żelazo może spełniać w organizmach żywych te funkcje, które obecnie spełniają inne metale. W tym celu przejrzały literaturę specjalistyczną i stwierdziły, że o ile obecnie życie korzysta z innych metali przejściowych, jak cynk, to nie jest to jedyny metal, który może zostać do tych funkcji wykorzystany. Przykład cynku i żelaza jest naprawdę znaczący, gdyż obecnie cynk jest niezbędny do istnienia życia. Pomysł życia bez cynku był dla mnie trudny do przyjęcia do czasu, aż przekopałyśmy się przez literaturę i zdałyśmy sobie sprawę, że gdy nie ma tlenu, który utleniłby Fe(II) do Fe(III) żelazo często lepiej spełnia swoją rolę w enzymach niż cynk, mówi Valentine. Dopiero po katastrofie tlenowej, gdy żelazo zostało utlenione i nie było tak łatwo biologicznie dostępne, życie musiało znaleźć inne metale, które wykorzystało w enzymach.
Zdaniem badaczy, życie w sytuacji powszechnej dostępności żelaza korzystało wyłącznie z niego, nie pojawiła się potrzeba ewolucji w kierunku korzystania w innych metali. Dopiero katastrofa tlenowa, która dramatycznie ograniczyła ilość dostępnego żelaza, wymusiła ewolucję. Organizmy żywe, by przetrwać, musiały zacząć korzystać z innych metali. Dzięki temu pojawiły się nowe funkcje, które doprowadziły do znanej nam dzisiaj różnorodności organizmów żywych.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Po dziesięcioleciach udało się odkryć ambipolarne (dwukierunkowe) pole elektryczne Ziemi. To słabe pole elektryczne naszej planety, które jest tak podstawową jej cechą jak grawitacja czy pola magnetyczne. Hipoteza o istnieniu takiego pola pojawiła się ponad 60 lat temu i od tamtego czasu poszukiwano tego pola. Jest ono kluczowym mechanizmem napędzającym „wiatr polarny”, czyli ucieczkę naładowanych cząstek z ziemskiej atmosfery w przestrzeń kosmiczną. Ma ona miejsce nad ziemskimi biegunami.
„Wiatr polarny” został odkryty w latach 60. XX wieku. Od samego początku naukowcy uważali, że jego siłą napędową jest nieznane pole elektryczne. Uważano, że jest ono generowane w skali subatomowej i jest niezwykle słabe. Przez kolejnych kilkadziesiąt lat ludzkość nie dysponowała narzędziami, które mogły zarejestrować takie pole.
W 2016 roku Glyn Collinson i jego zespół z Goddars Space Flight Center zaczęli pracować nad instrumentami zdolnymi do zmierzenia ambipolarnego pola elektrycznego. Stworzone przez nich urządzenia oraz metoda pomiaru zakładały przeprowadzenie badań za pomocą rakiety suborbitalnej wystrzelonej z Arktyki. Badacze nazwali swoją misję Endurance, na cześć statku, którym Ernest Shackleton popłynął w 1914 roku na swoją słynną wyprawę na Antarktykę. Rakietę postanowiono wystrzelić ze Svalbardu, gdzie znajduje się najbardziej na północ wysunięty kosmodrom. Svalbard to jedyny kosmodrom na świecie, z którego można wystartować, by przelecieć przez wiatr polarny i dokonać koniecznych pomiarów, mówi współautorka badań, Suzie Imber z University of Leicester.
Misja Endurance została wystrzelona 11 maja 2022 roku. Rakieta osiągnęła wysokość 768,03 km i 19 minut później spadła do Morza Grenlandzkiego. Urządzenia pokładowe zbierały dane przez 518 kilometrów nabierania wysokości i zanotowały w tej przestrzeni zmianę potencjału elektrycznego o 0,55 wolta. Pół wolta to tyle co nic, to napięcie baterii w zegarku. Ale to dokładnie tyle, ile trzeba do napędzenia wiatru polarnego, wyjaśnia Collinson.
Generowane pole elektryczne oddziałuje na jony wodoru, które dominują w wietrze polarnym, z siłą 10,6-krotnie większą niż grawitacja. To więcej niż trzeba, by pokonać grawitację. To wystarczająco dużo, by wystrzelić jony z prędkością naddźwiękową prosto w przestrzeń kosmiczną, dodaje Alex Glocer z NASA. Pole napędza też cięższe pierwiastki, jak jony tlenu. Z badań wynika, że dzięki obecności tego pola elektrycznego jonosfera jest na dużej wysokości o 271% bardziej gęsta, niż byłaby bez niego. Mamy tutaj rodzaj taśmociągu, podnoszącego atmosferę do góry, dodaje Collinson.
Pole to nazwano ambipolarnym (dwukierunkowym), gdyż działa w obie strony. Opadające pod wpływem grawitacji jony ciągną elektrony w dół, a w tym samym czasie elektrony – próbując uciec w przestrzeń kosmiczną – ciągną jony w górę. Wskutek tego wysokość atmosfery zwiększa się, a część jonów trafia na wystarczającą wysokość, by uciec w przestrzen kosmiczną w postaci wiatru polarnego.
Odkrycie ambipolarnego pola elektrycznego otwiera przed nauką nowe pola badawcze. Jest ono bowiem, obok grawitacji i pola magnetycznego, podstawowym polem energetycznym otaczającym naszą planetę, wciąż wpływa na ewolucję naszej atmosfery w sposób, który dopiero teraz możemy badać. Co więcej, każda planeta posiadająca atmosferę powinna mieć też ambipolarne pole elektryczne. Można więc będzie go szukać i badać na Marsie czy Wenus.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.