Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Lądy pojawiły się 500 milionów lat wcześniej niż sądzono?

Recommended Posts

Kontynentalna skorupa ziemska mogła pojawić się nawet 500 milionów lat wcześniej niż dotychczas przypuszczano. Określenie daty jej powstania jest o tyle istotne, że lepiej pomaga zrozumieć warunki, w jakich na naszej planecie pojawiło się życie.

Wietrzenie skorupy kontynentalnej dostarcza do oceanów wielu składników odżywczych, które mogły pomóc w utrzymaniu i rozwoju prymitywnego życia. Dlatego tak ważnym jest odpowiedź na pytanie, kiedy pojawiły się kontynenty. Aby na nie odpowiedzieć Desiree Roerdink z Uniwersytetu w Bergen i jej zespół zbadali próbki skał z 6 miejsc w Australii, RPA i Indiach.

W próbkach znajdował się baryt, minerał z grupy siarczanów, który może powstawać w pobliżu kominów hydrotermalnych. Baryt się nie zmienia. Jego skład chemiczny nosi ślady środowiska, w jakim powstawał, stwierdziła Roerdink prezentując wyniki swoich badań w czasie spotkania Europejskiej Unii Nauk Geologicznych.

Naukowcy wykorzystali stosunek izotopów strontu, by obliczyć, kiedy rozpoczęło się wietrzenie badanych przez nich skał. Na tej podstawie stwierdzili, że po raz pierwszy proces taki miał miejsce około 3,7 miliarda lat temu.

Ziemia powstała przed około 4,5 miliardami lat. Z czasem jej zewnętrzna część ostygła na tyle, że powstała sztywna skorupa pokryta globalnym oceanem. Przed około 4 miliardami lat rozpoczął się archaik, epoka geologiczna, w której pojawiło się życie. Mamy silne dowody na to, że co najmniej 3,5 miliarda lat temu na Ziemi istniały mikroorganizmy. Dokładnie jednak nie wiemy, kiedy życie się pojawiło.

Aaron Satkoski z University of Texas mówi, że badania grupy Roerdink pokazują, iż życie mogło pojawić się najpierw na lądzie. Badania te pozwalają nam stwierdzić, kiedy istniały lądy, które mogły pomóc w powstaniu życia, stwierdza uczony.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      W najbliższy poniedziałek NASA spróbuje zrobić coś, czego ludzkość nigdy wcześniej nie dokonała – zmienić tor lotu asteroidy. Jeśli wszystko pójdzie zgodnie z planem, 26 września o godzinie 21:14 czasu polskiego w asteroidę Dimorphos uderzy pojazd DART. Będzie to pierwszy w historii test obrony Ziemi przed asteroidami.
      Dimorphos ma około 170 metrów średnicy, krąży wokół 800-metrowego Didymosa i wcale nam nie zagraża. W momencie zderzenia będzie znajdował się około 11 milionów kilometrów od Ziemi. Misja DART ma na celu sprawdzenie przede wszystkim, czy jesteśmy w stanie trafić wysłanym z Ziemi pojazdem w asteroidę oraz czy po uderzeniu asteroida zmieni kurs. NASA chce, by pędzący z prędkością 23 000 km/h pojazd wielkości samochodu przesunął Dimorphosa skracając o 10 minut czas jego obiegu wokół Didymosa. Obecnie Dimorphos okrąża większą asteroidę w ciągu 11 godzin i 55 minut. Skrócenie tego czasu o 10 minut zostanie zarejestrowane przez naziemne teleskopy.
      Przed kilkoma tygodniami od misji DART oddzielił się satelita LICIACube, który podąża jego śladem. Po uderzeniu LICIACube będzie towarzyszył układowi Dimorphos-Didymos i przysyłał nam jego zdjęcia, na podstawie których specjaliści będą oceniali skutki zderzenia. Ponadto w październiku 2024 roku ma wystartować misja Hera Europejskiej Agencji Kosmicznej. Dwa lata później Hera spotka się z Dimorphosem i dokona szczegółowych pomiarów. W jej ramach na Dimorphosie ma wylądować miniaturowy lądownik.
      Czy coś nam grozi?
      W Układzie Słonecznym znajdują się miliardy komet i asteroid. Niewielka część z nich to NEO (near-Earth object), czyli obiekty bliskie ziemi. Za NEO uznawany jest obiekt, którego peryhelium – punkt orbity najbliższy Słońcu – wynosi mniej niż 1,3 jednostki astronomicznej. Jednostka astronomiczna (j.a.) to odległość pomiędzy Ziemią a Słońcem, wynosi ona 150 milionów kilometrów. To 1,3 j.a. od Słońca oznacza bowiem, że taki obiekt może znaleźć się w odległości 0,3 j.a. (45 milionów km) od Ziemi.
      Obecnie znamy (stan na 21 września bieżącego roku) 29 801 NEO. Uznaje się, że asteroidy o średnicy większej niż 20 metrów mogą, w przypadku wpadnięcia w atmosferę Ziemię, dokonać poważnych lokalnych zniszczeń. Oczywiście im asteroida większa, tym bardziej dla nas niebezpieczna. Za bardzo groźne uznawane są asteroidy o średnicy ponad 140 metrów, a te o średnicy ponad 1 kilometra mogą spowodować katastrofę na skalę globalną.
      Wśród wszystkich znanych nam NEO jest 10 199 obiektów o średnicy ponad 140 metrów i 855 o średnicy przekraczającej kilometr. Specjaliści uważają, że znamy niemal wszystkie NEO o średnicy przekraczającej kilometr. Wiemy też, że przez najbliższych 100 lat żaden taki obiekt nie zagrozi Ziemi. Jednak już teraz przygotowywane są scenariusze obrony.
      Gdybyśmy bowiem wykryli tak wielki obiekt, a badania jego orbity wykazałyby, że prawdopodobnie uderzy w Ziemię, będziemy potrzebowali całych dziesięcioleci, by się obronić. Jeśli bowiem chcielibyśmy zmieniać trasę takiego obiektu, to biorąc pod uwagę jego olbrzymią masę, już teraz wiemy, że wysłany z Ziemi pojazd, uderzając w asteroidę, tylko minimalnie zmieniłby jej trajektorię. Do zderzenia musiałoby zatem dojść na całe dziesięciolecia przed przewidywanym uderzeniem w Ziemię, by ta minimalna zmiana kumulowała się w czasie i by asteroida ominęła naszą planetę.
      Co lata obok
      W bieżącym roku w pobliżu Ziemi pojawi się kilka naprawdę dużych NEO. Pierwszą z nich będzie asteroida 2022 RM4 o średnicy 330–740 metrów, która 1 listopada przeleci w odległości 2,3 miliona kilometrów od nas. Trzy tygodnie później w trzykrotnie większej odległości od Ziemi znajdzie się 2019 QR1 o średnicy 180–410 metrów, a 2 i 3 grudnia w odległości około 5 milionów kilometrów przelecą obiekty o średnicy – odpowiednio – 320-710 m i 150-330 m.
      Jeśli zaś chodzi o asteroidy o średnicy ponad 1 kilometra, to w ciągu najbliższych 12 miesięcy będziemy mieli dwa takie spotkania. Już 16 lutego 2023 w odległości około 4,5 miliona kilometrów od Ziemi znajdzie się asteroida 199145 (2005 YY128) o średnicy 570–1300 metrów, a 13 kwietnia w podobnej odległości minie nas 436774 (2012 KY3) o średnicy 540–1200 metrów. Na odwiedziny prawdziwego olbrzyma musimy zaś poczekać do 2 września 2057 roku. Wtedy w odległości 7,5 miliona kilometrów minie nas pędząca z prędkością 48 492 km/h asteroida 3122 Florence o średnicy 4,9 km.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na łamach PNAS (Proceedings of the National Academies of Sciences) opublikowano właśnie artykuł The abundance, biomass, and distribution of ants on Earth, w którym naukowcy z Niemiec, Australii, Chin i Francji odpowiadają na pytanie o liczbę mrówek żyjących na Ziemi.
      Pytanie wydaje się mało poważne, jak na tak poważne wydawnictwo, jednak – jak podkreślają autorzy badań – znajomość rozkładu i liczebności organizmów jest podstawą do zrozumienia ich roli w ekosystemie. Mrówki żyją niemal na całej Ziemi, ich rolę trudno przecenić, a mimo to dotychczas nie znaliśmy ich liczebności. Na szczęście właśnie ją poznaliśmy.
      Autorzy artykułu przeanalizowali dane z 489 badań nad mrówkami. Obejmowały one wszystkie kontynenty, główne biomy i habitaty. Na tej podstawie uczeni oszacowali, że liczba mrówek wynosi 20 x 1015 czyli 20 000 000 000 000 000, to 20 biliardów osobników. I są to ostrożne szacunki.
      Taka liczba mrówek odpowiada biomasie około 12 milionów ton suchego węgla. To więcej niż biomasa wszystkich dzikich ptaków i ssaków oraz około 20% biomasy wszystkich ludzi.
      Naukowcy określili też dystrybucję różnych mrówek w różnych ekosystemach. To niezwykle ważna wiedza. Każdego roku mrówki przemieszczają do 13 ton ziemi na każdy hektar. Mają więc olbrzymi wpływ na obieg składników odżywczych i odgrywają decydującą rolę w dystrybucji nasion, mówi Patrick Schultheiss.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Super-ziemia TOI-1452 b może być w całości pokryta oceanem, uważa międzynarodowy zespół astronomów. Na łamach The Astronomical Journal uczeni poinformowali o odkryciu planety krążącej wokół czerwonego karła TOI-1452 znajdującego się w układzie podwójnym w Gwiazdozbiorze Smoka. Układ ten jest odległy od Ziemi o 99,5 lat świetlnych.
      TOI-1452 b jest nieco większa i bardziej masywna od naszej planety. Obiega swoją gwiazdę w ciągu 11 dni. Mimo że jej gwiazda jest mniejsza i chłodniejsza od Słońca, to planeta otrzymuje mniej więcej dwukrotnie więcej promieniowania niż Ziemia. Jest go tyle, że odpowiada ono temperaturze 52,85 stopni Celsjusza na powierzchni planety.
      Woda stanowi mniej niż 1% masy Ziemi. Gęstość niektórych egzoplanet wskazuje, że w większym stopniu zbudowane są z lżejszych materiałów niż nasza planeta. Najprawdopodobniej znaczy to, że zawierają więcej wody.
      TOI-1452 to jedna z najlepszych znanych nam kandydatek na wodny świat. Jej średnica i masa wskazują, że ma ona znacznie mniejszą gęstość niż planeta zbudowana ze skał i metali, jak Ziemia, stwierdził główny autor badań, Charles Cadieux. Analizy wykazały, że planeta może aż w 30% składać się z wody.
      TOI-1452 b z pewnością będzie badana za pomocą Teleskopu Webba. Znajduje się bowiem stosunkowo blisko Ziemi, co ułatwia badanie jej atmosfery, ponadto jest w takim miejscu nieboskłonu, który jest widoczny dla Webba przez większą część roku. Jak tylko zarezerwujemy sobie czas obserwacyjny na JWST rozpoczniemy pracę nad lepszym zrozumieniem tej planety, dodaje profesor René Doyon z Uniwersytetu w Montrealu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Już za tydzień, 26 września, przez całą noc będziemy mogli cieszyć się wyjątkowym widokiem Jowisza. Planeta znajdzie się w wielkiej opozycji, a to oznacza, że będzie doskonale widoczna. Wystarczy dobra lornetka by zaobserwować charakterystyczne barwne pasy planety i trzy z czterech księżyców galileuszowych. To największe księżyce Jowisza, które Galileusz odkrył w 1610 roku.
      Opozycja ma miejsce, gdy dwa ciała oglądane z Ziemi znajdują się naprzeciwko siebie. Najczęściej mówimy tutaj o opozycji obserwowanego ciała do Słońca. Opozycja Jowisza, a zatem sytuacja gdy Słońce i Jowisz znajdują się po przeciwnych sobie stronach Ziemi, zachodzi co 13 miesięcy. Jowisz wydaje się wówczas jaśniejszy i większy. Tym razem jednak opozycja będzie wyjątkowa, gdyż jednocześnie Jowisz będzie w peryhelium, czyli najbliższym Słońcu punkcie swojej orbity. Będziemy więc mieli do czynienia z wielką opozycją, zwaną też wielkim zbliżeniem, które ma miejsce co kilkanaście lat. Tym razem jednak Jowisz podczas opozycji znajdzie się najbliżej Ziemi od 70 lat.
      Opozycja Jowisza rzadko zbiega się z jego peryhelium. Dlatego warto poświęcić część nocy na obserwacje. Jowisz będzie jednym z najjaśniejszych – a może nawet najjaśniejszym – obiektem na nocnym niebie. Zaraz po Księżycu, rzecz jasna.
      Na kolejne wielkie zbliżenie Jowisza trzeba będzie poczekać do 2 października 2034 roku. Jednak wówczas planeta będzie o 700 000 kilometrów dalej od Ziemi niż przy obecnym wielkim zbliżeniu.
      Jowisz bardzo interesuje naukowców. Obecnie planeta jest badana przez misję Juno. Została ona wystrzelona w 2011 roku i dotarła do planety w roku 2016. Początkowo planowano, że cała misja potrwa 7 lat. Juno pracuje już 11 lat a niedawno NASA przedłużyła jej misję do roku 2025. Na rok 2024 zaplanowano wystrzelenie misji Europa, która ma badać jeden z księżyców galileuszowych – Europę.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Politechniki Federalnej w Zurychu (ETH Zurich) znaleźli pierwszy jednoznaczny dowód, że na Księżycu znajdują się gazy szlachetne pochodzące z płaszcza Ziemi. To niezwykle ważne odkrycie, które lepiej pozwala zrozumieć, jak powstał Księżyc oraz – być może – inne ciała niebieskie. Jest ono też silnym potwierdzeniem dominującej obecnie teorii wielkie zderzenia mówiącej, że naturalny satelita naszej planety pojawił się w wyniku kolizji Ziemi z planetą wielkości Marsa.
      W ramach pracy nad doktoratem Patrizia Will z ETH Zurich analizowała przekazane jej przez NASA sześć próbek meteorytów znalezionych na Antarktydzie. Meteoryty składały się ze skał bazaltowych powstałych w wyniku szybkiego schłodzenia magmy wypływającej z wnętrza Księżyca. Co ważne, takich warstw bazaltu było wiele, dzięki czemu te wewnętrzne były dobrze chronione przed promieniowaniem kosmicznym i wiatrem słonecznym. W wyniku chłodzenia powstało m.in. szkło. Will i jej współpracownicy zauważyli, że w cząstkach szkła są ślady helu i neonu pochodzących z wnętrza Księżyca.
      Noble Gas Laboratory na ETH Zurich posiada najczulszy na świecie spektrometr zdolny do wykrycia minimalnych ilości helu i neonu. Dzięki niemu uczeni mogli wykluczyć, by badane przez nich gazy powstały na Księżycu w wyniku oddziaływania promieniowania kosmicznego czy wiatru słonecznego. Jak wynika z ich badań, jedynym źródłem tych gazów może być płaszcz Ziemi.
      Badania Szwajcarów to zapewne dopiero początek. Teraz, gdy pokazali oni jak i gdzie szukać gazów szlachetnych meteorytach, rozpocznie się wyścig badaczy w celu ich identyfikacji, mówi jeden z najwybitniejszych ekspertów w tej dziedzinie, profesor Henner Busemann. Uczony sądzi, że wkrótce naukowcy postarają się znaleźć znacznie trudniejsze do zidentyfikowania ksenon i krypton. Będą też szukali wodoru i halogenków. Bardzo dobrze byłoby się dowiedzieć, jak niektóre z tych gazów szlachetnych przetrwały gwałtowny proces formowania się Księżyca. Taka wiedza pozwoli geochemikom i geofizykom na stworzenie nowych nowych modeli pokazujących, w jaki sposób mogły formować się planety w Układzie Słonecznym i poza nim, mówi Busemann.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...