Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

U dzieci narażonych na zanieczyszczone powietrze dochodzi do zmian w DNA

Recommended Posts

Wystarczy jeden dzień kontaktu z powietrzem zanieczyszczonym przez spaliny samochodowe czy dymy z pożarów lasów, by nasze dziecko było w przyszłości narażone na większe ryzyko chorób serca i innych schorzeń. Badania przeprowadzone m.in. przez naukowców z Uniwersytetu Stanforda są pierwszymi, podczas których oceniono wpływ zanieczyszczenia powietrza na pojedyncze komórki, a jednocześnie zbadano jego wpływ na układy krążenia i odporności u dzieci.

Badania te potwierdzają, że zanieczyszczone powietrze wpływa na sposób działania naszych genów w sposób, który ma negatywne długoterminowe skutki zdrowotne. Mamy tutaj wystarczające dowody, by powiedzieć pediatrom, że zanieczyszczenie powietrza wpływa nie tylko na astmę i choroby układu oddechowego, ale również na układy krwionośny i odpornościowy, mówi główna autorka badań, Mary Prunicki. Wygląda na to, że nawet krótkie wystawienie dziecka na oddziaływanie zanieczyszczonego powietrza zmienia regulację oraz ekspresję genów i być może ciśnienie krwi, kładąc w ten sposób podstawy pod zwiększone ryzyko chorób serca w późniejszym życiu.

Naukowcy zbadali dzieci w wieku 6–8 lat mieszkające we Fresno w Kalifornii. Powietrze w tym mieście należy – ze względu na okoliczną działalność rolniczą, przemysłową, pożary lasów i inne czynniki – do najbardziej zanieczyszczonych w całych USA. Uczeni wykorzystali dane z monitoringu powietrza do oceny średniej ekspozycji na zanieczyszczenie, którą obliczono dla każdego z dzieci na 1 dzień, 1 tydzień oraz 1, 3, 6 i 12 miesięcy przed rozpoczęciem badań. Po raz pierwszy też przy takich badaniach wykorzystano spektrometrię mas do oceny komórek układu odpornościowego.

Wnioski z badań są alarmujące. Okazało się, że wystawienie na oddziaływanie pyłu zawieszonego PM2.5, tlenku azotu oraz ozonu są powiązane ze zwiększoną metylacją DNA. To zmienia aktywność genów, a zmiana ta może być przekazywana kolejnym pokoleniom. Naukowców zauważyli też korelację pomiędzy zanieczyszczeniem powietrza a wzrostem liczby monocytów, które biorą udział w odkładaniu się blaszek miażdżycowych w naczyniach krwionośnych. To może narażać dziecko na większe ryzyko chorób serca w przyszłości.

W badaniach brały udział przede wszystkim dzieci o hiszpańskich korzeniach. Z innych badań wiemy, że z jednej strony są one narażone na ponadprzeciętne poziomy zanieczyszczeń powietrza spalinami samochodowymi, z drugiej zaś, że dorośli o hiszpańskich korzeniach częściej niż inne grupy etniczne cierpią na nadciśnienie. Wiemy też, że choroby układu oddechowego każdego roku zabijają coraz więcej osób i są drugą najczęstszą przyczyną zgonów na całym świecie.

To problem każdego z nas. Niemal połowa Amerykanów i większość ludzi na świecie oddycha niezdrowym powietrzem. Poradzenie sobie z tym problemem może ocalić życie wielu osobom, mówi profesor Kari Nadeau.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      W naszych organizmach bez przerwy znajdują się tysiące komórek, w których DNA pojawiły się błędy mogące powodować nowotwory. Jednak tylko w rzadkich przypadkach rzeczywiście dochodzi do rozwoju choroby. Standardowe wyjaśnienie tego fenomenu jest takie, że potrzebna jest odpowiednia liczba konkretnych mutacji, by pojawił się nowotwór. Nauka zna jednak liczne przypadki, gdy ten sam zestaw mutacji raz powoduje nowotwór, a raz nie.
      Dobrym przykładem takiego zjawiska są pieprzyki na skórze. Komórki, z których one powstają, nie są normalne pod względem genetycznym. Często zawierają one zmutowany gen BRAF, który – gdy znajdzie się w komórkach poza pieprzykiem – często powoduje czerniaka. Jednak zdecydowana większość pieprzyków u zdecydowanej większości ludzi nigdy nie zamienia się w guzy nowotworowe.
      Na łamach Science opublikowano właśnie artykuł, z którego dowiadujemy się, że powstanie czerniaka zależy od czegoś, co autorzy badań nazwali „kompetencją onkogeniczną”. Jest ona wynikiem współpracy pomiędzy mutacjami DNA w komórce a konkretnym zestawem genów, które są w niej aktywowane. Jak się okazało, komórki posiadające kompetencję onkogeniczną do utworzenia czerniaka mają dostęp do zestawu genów, które normalnie są nieaktywne w dojrzałych melanocytach. Odkrycie to wyjaśnia, dlaczego jedne komórki tworzą guzy nowotworowe, a inne nie. Pewnego dnia odkrycie to może zostać wykorzystane do walki z nowotworami.
      Dotychczas sądzono, że do rozwoju nowotworu konieczne jest pojawienie się dwóch mutacji DNA: aktywny onkogen i nieaktywny antyonkogen. Teraz naukowcy ze Memorial Sloan Kettering Cancer Center (MSK) odkryli trzeci element. Zauważyli bowiem, że do pojawienia się czerniaka potrzebny jest dostęp do genów, które są zwykle wyłączone w dojrzałych melanocytach. Aby ten dostęp mieć, komórki potrzebują specyficznych protein. Bez nich guz się nie utworzy, nawet jeśli występują powiązane z nowotworem mutacje DNA.
      Przed ponad 10 laty profesor Richard White badał rozwój czerniaka u danio pręgowanego. To złośliwy nowotwór skóry i błon śluzowych wywodzący się z komórek pigmentowych, melanocytów. Przeprowadzone wówczas analizy wykazały, że w guzach aktywne są liczne geny charakterystyczne bardziej dla komórek embrionalnych, a nie dojrzałych melanocytów. Zaczęliśmy się więc zastanawiać, dlaczego geny te zostały włączone. Czy są one ważne dla rozwoju guza, a jeśli tak, to w jaki sposób, mówi White.
      Naukowcy wzięli na warsztat gen BRAF, którego zmutowana forma jest obecna w połowie przypadków czerniaka. Gen ten aktywowano w komórkach danio na trzech różnych etapach ich rozwoju. Na etapie grzebienia nerwowego (NC), z którego rozwija się wiele różnych komórek, w tym melanocyty; na etapie melanoblastu (MB), czyli komórki prekursorowej melanocytu, oraz na etapie dojrzałego melanocytu (MC). Okazało się, że do rozwoju guzów doszło tylko u tych ryb, u których zmutowana forma BRAF została aktywowana na etapie NC i MB.
      Następnie uczeni wprowadzili zmutowany BRAF do ludzkich macierzystych komórek pluripotencjalnych znajdujących się na tych samych trzech stadiach rozwoju, co komórki badane u ryb, i wszczepili je myszom. I znowu okazało się, że tylko w przypadku komórek w dwóch stadiach rozwoju, NC i MB, pojawiły się guzy nowotworowe.
      Badacze zaczęli więc poszukiwać różnic molekularnych pomiędzy komórkami. Zauważyli, że różnica dotyczy genu ATAD2, który kontroluje dynamikę chromatyny, substancji występującej w jądrze komórkowym. Gen ten był aktywny w komórkach NC i MB, ale nie MC. Gdy naukowcy usunęli ATAD2 z podatnych na czerniaka danio pręgowanych, guzy nie powstały. Gdy zaś wprowadzili aktywny ATAD2 do dojrzałych melanocytów (MC), komórki zyskały zdolność tworzenia guza.
      Autorzy badań przeanalizowali następnie dane kliniczne zarówno pacjentów Memorial Sloan Kettering Cancer Center jak i dane dostępne w Cancer Genome Atlas. Zauważyli, że ATAD2 jest ważnym czynnikiem rozwoju czerniaka. Okazało się bowiem, że pacjenci, u których gen ten był bardziej aktywny, mieli mniejsze szanse przeżycia. Wydaje się więc, że jest on istotny dla rozwoju nowotworu. Mutacje DNA są jak zapalniczka. Jeśli masz nieodpowiednie drewno lub jest ono mokre, może powstać iskra, ale nie będzie ognia. Jeśli jednak drewno jest odpowiednie, wszystko zaczyna się palić", mówi doktor Arianna Baggiolini.
      Technika pracy z pluripotencjalnymi komórkami macierzystymi, która została opracowana na potrzeby badań nad czerniakiem, może zostać wykorzystana podczas spersonalizowanego leczenia nowotworu. Richard White i Lorenz Studer z MSK uzyskują z krwi pacjentów pluripotencjalne komórki macierzyste. Następnie są w stanie wprowadzać do tych komórek specyficzne mutacje, charakterystyczne dla guza nowotworowego każdego pacjenta. W ten sposób tworzony jest indywidualny model choroby, na którym można testować wiele różnych leków, by sprawdzić, które dadzą najlepsze efekty u danej osoby.
      Wykorzystując pluripotencjalne komórki macierzyste możemy próbować stworzyć indywidualne modele choroby dla każdego pacjenta i każdego rodzaju tkanki. Mam nadzieję, że z czasem stanie się to standardową metodą leczenia nowotworów, mówi Studer.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Tempo mutacji wirusa SARS-CoV-2 jest znacznie szybsze niż uważano. Nowa mutacja pojawia się niemal co tydzień, informują naukowcy z Uniwersytetów w Bath i Edynburgu. To zaś oznacza, że nowe odmiany patogenu mogą pojawiać się częściej niż przypuszczano.
      Jeszcze do niedawna naukowcy uważali, że nowe mutacje pojawiają się mniej więcej raz na dwa tygodnie. Jednak prace przeprowadzone przez specjalistów z Milner Centre for Evolution na University of Bath i MRC Human Genomic Unit na Uniwersytecie w Edynburgu wykazały, że podczas wcześniejszych badań naukowcy przeoczyli wiele mutacji, które miały miejsce, ale nigdy nie zostały wychwycone.
      Mutacje zachodzą w wirusie np. w wyniku błędu w czasie kopiowania genomu gdy wirus się replikuje. Większość tych zmian to mutacje szkodliwe dla samego wirusa, które zmniejszają jego szanse na przetrwanie. Tego typu mutacje są szybko usuwane, więc bardzo łatwo je przeoczyć.
      Brytyjscy uczeni wzięli pod uwagę zjawisko szybko usuwanych mutacji i na tej podstawie oszacowali, że tempo mutowania wirusa jest szybsze niż przypuszczano. To zaś wskazuje na potrzebę izolacji i dokładniejszego przebadania osób, które przez dłuższy czas zmagają się z infekcją. Nasze odkrycie oznacza, że jeśli choruje dłużej niż przez kilka tygodni, to w jego organizmie może pojawić się nowy wariant wirusa, mówi profesor Laurence Hurst z University of Bath. Uczony dodaje, że wariant Alfa prawdopodobnie pojawił się właśnie u pacjenta, którego układ odpornościowy przez dłuższy czas nie był w stanie oczyścić organizmu z wirusa.
      U zdecydowanej większości osób zakażonych organizm na tyle szybko radzi sobie z wirusem, że nie zdąży on zbytnio zmutować. To oznacza, że ryzyko, iż nowy wariant wyewoluuje w organizmie pojedynczego pacjenta, jest niewielkie. Jednak odkrycie, że wirus mutuje szybciej, oznacza, że szanse pojawienia się nowego wariantu rosną.
      Naukowcy postanowili sprawdzić też, dlaczego niektóre mutacje szybko są usuwane. Wykorzystali przy tym pewien trik. Podczas II wojny światowej Amerykanie tracili dużo samolotów latających nad Niemcami. Chcieli więc sprawdzić, w którym miejscu należy wzmocnić samoloty. Oglądali więc powracające samoloty, patrzyli w których miejscach są dziury po pociskach wroga. Na tej podstawie stwierdzili, że wzmocnić należy miejsca, gdzie dziur nie ma. Gdyż to trafienie w te miejsca powodowały, że samolot spadał i nie wracał do bazy – wyjaśnia Hurst.
      Naukowcy wykorzystali więc dostępne obecnie bazy danych, w których znajduje się olbrzymia liczba zsekwencjonowanych genomów SARS-CoV-2. Stwierdzili, że te miejsca w których nie zauważono mutacji, są zapewne miejscami, gdzie mutacje są niebezpieczne dla wirusa. Większość takich miejsc negatywnej selekcji była łatwa do przewidzenia. Można się było domyślić, że niepożądane z punktu widzenia wirusa są te miejsca, gdzie mutacje spowodują np. złe funkcjonowanie białek, w tym chociażby białka S.
      Było jednak kilka niespodzianek. Proteiny, które wytwarza wirus, są złożone z aminokwasów. Geny wirusa zawierają instrukcje, które aminokwasy i w jakiej kolejności mają się ze sobą łączyć. Zauważyliśmy, że preferowane są mutacje, w których używane są bardziej stabilne aminokwasy, co oznacza, że nie muszą zachodzić często i nie wymagają zbyt wielu zasobów energetycznych. Sądzimy, że dzieje się tak dlatego, iż wirus znajduje się pod duża presją by replikować się szybko. Preferowane są więc bardziej trwałe aminokwasy, bo dzięki temu nie trzeba zbyt długo czekać na dostarczenie odpowiednich zasobów, wyjaśnia główny autor badań, doktor Atahualpa Castillo Morales.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Szczegóły rozprzestrzeniania się różnych gatunków ludzi po świecie wciąż owiane są tajemnicą. Bardzo mało wiemy np. o kolonizacji Azji Południowo-Wschodniej przez wczesnego człowieka współczesnego. Dysponujemy niewielką ilością materiału archeologicznego, a w tropikach DNA słabo się przechowuje. Międzynarodowy zespół naukowy poinformował właśnie o zbadaniu pierwszego ludzkiego prehistorycznego DNA z Wallacei. Wyniki badań od razu wzbudziły sensację, gdyż okazało się, że zmarła nastolatka należała do nieznanej linii H. sapiens.
      Wallacea to biogeograficzny region obejmujący centralną Indonezję, z takimi wyspami jak Sulawesi (Celebes), Lombok, Timor czy Halmahera. Wyspy te leżą pomiędzy Borneo, Jawą i Bali na zachodzie, a wybrzeżami Australii i Nowej Gwinei na wschodzie.
      Dotychczas udało się zsekwencjonować jedynie dwa preneolityczne ludzkie genomy z Azji Południowo-Wschodniej. Oba należą do przedstawicieli kultury łowiecko-zbierackiej Hoa Binh, którzy żyli na samym kontynencie azjatyckim.
      Tym razem jednak uczeni z Australii, Niemiec, Korei i Indonezji zsekwencjonowali zupełnie unikatowy materiał – DNA z kości młodej kobiety w wieku 17–18 lat, która 7300–7200 lat temu została pochowana w jaskini na południu Sulawesi. Nastolatka była przedstawicielką kultury toalean. Jej DNA wykazuje co prawda wiele podobieństw ze współczesnymi Papuasami i Aborygenami, jednak okazało się, że linia ewolucyjna, do której należała, oddzieliła się od innych linii Homo sapiens przed około 37 000 lat.
      Przedstawiciele kultury toalean byli łowcami-zbieraczami z południa Sulawesi. To bardzo enigmatyczna kultura, która pozostawiła po sobie nieco szkieletów i dużą liczbą wyjątkowych kamiennych narzędzi. Takich narzędzi, w tym grotów strzał zwanych maros, nie znaleziono nigdzie indziej na świecie.
      Wiemy, że człowiek dotarł do Australii co najmniej 50 000 lat temu, a najprawdopodobniej zaczął ją zasiedlać już 65 000 lat temu. Najstarsze dowody archeologiczne na obecność ludzi na Wallacei liczą sobie około 45 000 lat, a najstarsze znalezione szczątki Homo sapiens pochodzą sprzed 13 000 lat. Nasze modele demograficzne pokazują, że ludność Oceanii i Eurazji rozdzieliła się około 58 000 lat temu, a Papuasi i Aborygeni oddzielili się od siebie około 37 000 lat temu. W ciągu 20 000 lat dzielących te wydarzenia H. sapiens wielokrotnie krzyżował się z ludźmi spokrewnionymi z denisowianami i – być może – również z nieznanymi homininami.
      Zbadany właśnie genom młodej kobiety zawiera więcej DNA denisowian niż wspomniane wcześniej dwa preneolityczne genomy z Azji Południowo-Wschodniej, ale śladów denisowian jest u współczesnych mieszkańców Wallacei mniej niż u współczesnych Papuasów i Aborygenów. Zdaniem naukowców to wynik mieszania się tamtejszej ludności z neolitycznymi rolnikami z Azji Wschodniej, którzy zasiedlili Wallaceę przed 4000 lat.
      Kultura toalean występowała jedynie na niewielkim obszarze obejmującym około 10 000 km2 południa Sulawesi. Istniała ona pomiędzy 8000 a 1500 lat temu. W 2015 roku na stanowisku Leang Panninge znaleziono pierwszy dość dobrze zachowany szkielet przedstawiciela – a jak się później okazało, przedstawicielki – tej kultury. Szczątki znaleziono na głębokości około 190 cm w warstwie nie zawierającej ceramiki. Dzięki datowaniu obecnych w tej samej warstwie nasion, stwierdzono, że pochowana tutaj kobieta w wieku 17–18 lat zmarła pomiędzy 7300 a 7200 lat temu.
      Badania DNA potwierdziły spostrzeżenia morfologiczne, że mamy do czynienia ze szczątkami kobiety. Wykazały również, że była ona potomkinią pierwszej fali współczesnych ludzi, który dotarli na Wallaceę. Ludzi, którzy byli tez przodkami współczesnych Aborygenów i Papuasów. Jednak kobieta była spokrewniona też z inną grupą, która prawdopodobnie dotarła do Wallacei później, gdy Australia i Nowa Gwinea zostały już skolonizowane. Do wniosków takich prowadzi fakt, że w genomach rodzimych mieszkańców Australii i Nowej Gwinei brak śladów tej grupy.
      Odkrycie to znacząco zmienia nasz pogląd na kolonizację tych obszarów. Dotychczas sądzono bowiem, że pierwsi ludzie z azjatyckimi genami dotarli na Wallaceę przed 3500 laty i byli to neolityczni farmerzy, którzy przybyli przez Tajwan i Filipiny na teren współczesnej Indonezji. Jednak obecne wyniki badań wskazują, że w regionie tym przebywała inna grupa Homo sapiens, o istnieniu której nie mieliśmy pojęcia. Istotnym odkryciem jest też odnotowanie śladów denisowian w genomie nastolatki. Dowodzi to bowiem, że denisowianie rozprzestrzenili się znacznie bardziej niż tylko na część Syberii i Tybet. Znaczący jest też brak śladów DNA u ludzi, którzy w tym samym czasie co badana nastolatka żyli na zachód od Wallacei. Być może Wallacea była kluczowym regionem, w którym denisowianie krzyżowali się z przodkami Papuasów i Aborygenów.
      Nie wiemy, co stało się z przedstawicielami kultury toalean. Zniknęła ona około 1500 lat temu. Najprawdopodobniej jej zanik ma związek ze wspomnianą już migracją neolitycznych rolników z Azji Wschodniej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Denisowianie, gatunek człowieka, o którego istnieniu dowiedzieliśmy się zaledwie przed 11 laty, pozostawili najwięcej śladów genetycznych wśród populacji, które zamieszkują obecnie wyspy Azji Południowo-Wschodniej. Autorzy najnowszych badań donoszą, że ludźmi, posiadającymi najwięcej genów denisowian, są przedstawiciele plemienia Ayta Magbukon z Filipin. Od denisowian pochodzi aż 5% ich genomu.
      Odkrycie dokonane przez Maximiliana Larenę i Mattiasa Jakobssona z Uniwersytetu w Uppsali wspiera teorię, zgodnie z którą co najmniej dwie populacje denisowian, niezależnie od siebie, dotarły w epoce kamienia na różne wyspy, w tym na Filipiny i Nową Gwineę. Dokładnych dat przybycia nie znamy, jednak na Celebes znaleziono kamienne narzędzia sprzed 200 000 lat, które mogły zostać wykonane przez denisowian. H. sapiens pojawił się w tamtych rejonach co najmniej 50 000 lat temu i krzyżował się z denisowianami.
      Nie wiemy, jak spokrewnione były ze sobą różne grupy denisowian z wysp i kontynentu oraz na ile były zróżnicowane, mówi Jakobsson.
      Jeszcze do niedawna sądzono, że najwięcej genów po denisowianach – 4% genomu – odziedziczyli mieszkańcy górskich terenów Papui-Nowej Gwinei. Jednak u Ayta Magbukon genów takich jest od 30 do 40 procent więcej.
      Badania genetyczne sugerują, że Ayta Magbukon posiadają nieco więcej genów denisowian niż inne ludy z grupy Negrito, gdyż rzadziej niż one krzyżowali się z migrantami z Azji Wschodniej, którzy przybyli na Filipiny ok. 2300 lat temu. Jakobsson i Larena dokonali swojego odkrycia badając 1107 osób ze 118 grup etnicznych zamieszkujących Filipiny.
      Badania te pokazują, że wciąż istnieją populacji, których dobrze nie opisaliśmy pod względem genetycznym, a denisowianie bardzo szeroko się rozprzestrzenili, stwierdza Cosimo Posth z Uniwersytetu w Tybindze.
      Naukowcy zastrzegają jednak, że wciąż jest zbyt wcześnie by stwierdzić, czy niektóre szczątki rodzaju Homo znalezione na wyspach Azji Południowo-Wschodniej należały do denisowian, populacji krzyżujących się z denisowianami czy jakichś innych gatunków Homo. Zagadkę mogłyby rozwiązać badania genetyczne, ale DNA źle się przechowuje w klimacie tropikalnym.
      Obecnie znamy niewiele szczątków denisowian. Są wśród nich te odkryte w Denisowej Jaskini, skąd denisowianie biorą swoją nazwę. Szczątki te liczą sobie od 300 000 do 50 000 lat. Dysponujemy też fragmentem żuchwy z Wyżyny Tybetańskiej, której wiek określono na 160 000 lat. Szczątki z Filipin sprzed 50 000 lat, klasyfikowane oryginalnie jako H. luzonensis, mogły należeć do denisowianina.
      Już wcześniejsze badania sugerują, że na wyspy Azji Południowo-Wschodniej i do Australii mogły dotrzeć zróżnicowane genetycznie grupy denisowian.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy odkryli, że w wielu przypadkach raka przełyku dochodzi do aktywowania wirusowego genomu, który jest obecny w genomie od milionów lat. To było zaskoczenie. Nie poszukiwaliśmy elementów wirusowych, ale ich odkrycie otwiera drogę dla potencjalnych leków przeciwnowotworowych, mówi główny autor badań profesor Adam Bass z Columbia University Vagelos College of Physicians and Surgeons. Wyniki badań opublikowano w Nature Genetics.
      Retrowirusy endogenne (ERV) to retrowirusy, które miliony lat temu zainfekowały pierwotne komórki rozrodcze kręgowców. Włączyły się one do materiału genetycznego zainfekowanego organizmu. Z czasem, w wyniku mutacji i kolejnych infekcji, genom wirusów stał się znaczną częścią genomu kręgowców. U człowieka aż 8% DNA pochodzi od retrowirusów.
      Pomysł, że ERV mogą przyczyniać się do rozwoju nowotworów, nie jest nowy. Co prawda ERV z czasem uległy degradacji i nie tworzą wirusów, ale mogą trafić do różnych genów, zaburzając ich aktywność lub też aktywując geny powodujące nowotwory. Ostatnio jednak zaczęły pojawiać się badania sugerujące, że ERV można wykorzystać do walki z nowotworami, jeśli uda się przeprowadzić ich transkrypcję do RNA. Gdy komórki aktywują wiele ERV, pojawia się wiele podwójnych nici RNA, które trafia do cytoplazmy komórek. To tworzy stan podobny do infekcji wirusowej i wywołuje reakcję zapalną. W ten sposób ERV mogą powodować, że nowotwory staną się bardziej podatne na immunoterapię. Wiele zespołów próbuje skłonić komórki nowotworowe do aktywowania ERV, wyjaśnia Bass.
      Bass wraz z zespołem wykorzystali tkanki myszy, z których stworzyli organoidy przełyku, by zbadać, w jaki sposób zdrowe komórki zamieniają się w komórki nowotworowe. Okazało się, że gen SOX2, który ułatwia rozwój nowotworu przełyku, prowadzi też do ekspresji licznych ERV. Jako, że duża ekspresja ERV i ich akumulacja są szkodliwe dla komórek, pojawia się enzym ADAR1, który prowadzi do szybkiej degradacji podwójnych nici RNA.
      Już z innych badań wiadomo, że ADAR1 jest związany z rakiem przełyku oraz, że im wyższy jego poziom, tym gorsze rokowania dla pacjenta. Jednak rola ADAR1 w raku przełyku nie była dotychczas znana. Nowotwory te są zależne od ADAR1. Jego działanie zapobiega pojawieniu się reakcji immunologicznej, która może być bardzo szkodliwa dla komórek, wyjaśnia Bass.
      Drugą ważną wskazówką był fakt, że niektóre osoby cierpiące na raka przełyku są poddawani immunoterapii, co wydłuża ich życie o kilka miesięcy. Blokowanie ADAR1 może mieć bezpośredni wpływ na rozwój raka przełyku, a do tego może znacząco zwiększać skuteczność immunoterapii u osób z tym nowotworem, ekscytuje się Bass.
      Jednak to nie wszystko. Obserwacja rozwoju nowotworu w utworzonych organoidach ujawniła wiele innych procesów, które można wykorzystać podczas leczenia. Sposób, w jaki użyliśmy organoidów, by ze zwykłych komórek utworzyć komórki nowotworowe to świetny system do odkrywania procesów wywołujących raka i testowania leków. Dzięki temu, że mogliśmy dokonywać pojedynczych zmian w genomie, byliśmy w stanie stwierdzić, które kombinacje zmian genetycznych prowadzą do rozwoju nowotworu, stwierdza Bass. Uczeni mogli sprawdzić, jakie są różnice w organoidach prawidłowych i nowotworowych, co z kolei pozwala odróżnić aktywność SOX2 w komórkach prawidłowych i nieprawidłowych.
      Ważne jest, byśmy poznali tę różnicę, gdyż potencjalne terapie muszą brać na cel komórki nowotworowe, ale oszczędzać zdrowe. Komórki nowotworowe łatwo jest zabić. Problem jednak w tym, w jaki sposób je zabić, oszczędzając zdrowe komórki, komentuje Bass.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...