Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
![KopalniaWiedzy.pl](https://forum.kopalniawiedzy.pl/uploads/monthly_2020_07/kopalniawiedzy.thumb.png.07866968d851589e849bf8f30744d544.png)
Koncerny farmaceutyczne inwestują w informatykę kwantową. Maszyny kwantowe poszukają nowych leków
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Naukowcy z Wydziału Fizyki Uniwersytetu Oksfordzkiego wykonali ważny krok w kierunku praktycznego wykorzystania komputerów kwantowych. Jako pierwsi zaprezentowali kwantowe przetwarzanie rozproszone. Wykorzystali przy tym fotoniczny interfejs, za pomocą którego połączyli dwa procesory kwantowe w jeden w pełni działający komputer. Swoje osiągnięcie opisali na łamach Nature.
W ten sposób zapoczątkowali rozwiązanie problemu skalowalności maszyn kwantowych. Dzięki temu można, przynajmniej teoretycznie, połączyć olbrzymią liczbę niewielkich urządzeń kwantowych, które działałyby jak jeden procesor operujący na milionach kubitów. Zaproponowana na Oksfordzie architektura składa się z niewielkich węzłów, z których każdy zawiera małą liczbę kubitów, na które składają się jony uwięzione w pułapkach. Połączone za pomocą światłowodów węzły można ze sobą splątać, co pozwala na przeprowadzanie obliczeń kwantowych, podczas których wykorzystuje się kwantową teleportację.
Oczywiście już wcześniej różne zespoły naukowe potrafiły dokonać kwantowej teleportacji stanów. Wyjątkowym osiągnięciem uczonych z Oksfordu jest teleportacja bramek logicznych. Zdaniem badaczy, kładzie to podwaliny pod „kwantowy internet” przyszłości, w którym odległe procesory utworzą bezpieczną sieć komunikacyjną i obliczeniową.
Autorzy dotychczasowych badań nad kwantową teleportacją skupiali się na teleportacji stanów kwantowych pomiędzy fizycznie oddalonymi systemami. My użyliśmy kwantowej teleportacji do przeprowadzenia interakcji pomiędzy takimi systemami. Precyzyjnie dostrajając takie interakcje możemy przeprowadzać operacje na bramkach logicznych pomiędzy kubitami znajdującymi się w oddalonych od siebie miejscach. To pozwala na połączenie różnych procesorów kwantowych w jeden komputer, mówi główny autor badań Dougal Main.
Wykorzystana koncepcja jest podobna do architektury superkomputerów, w których poszczególne węzły obliczeniowe – de facto osobne komputery – są połączone tak, że działają jak jedna wielka maszyna. W ten sposób naukowcy ominęli problem upakowania coraz większej liczby kubitów w jednym komputerze, zachowując jednocześnie podatne na zakłócenia stany kwantowe, niezbędne do przeprowadzania operacji obliczeniowych. Taka architektura jest też elastyczna. Pozwala na podłączania i odłączanie poszczególnych elementów, bez zaburzania całości.
Badacze przetestowali swój komputer za pomocą algorytmu Grovera. To kwantowy algorytm pozwalający na przeszukiwanie wielkich nieuporządkowanych zbiorów danych znacznie szybciej niż za pomocą klasycznych komputerów. Nasz eksperyment pokazuje, że obecna technologia pozwala na kwantowe przetwarzanie rozproszone. Skalowanie komputerów kwantowych to poważne wyzwanie technologiczne, które prawdopodobnie będzie wymagało nowych badań w dziedzinie fizyki i będzie wiązało się poważnymi pracami inżynieryjnymi w nadchodzących latach, dodaje profesor David Lucas z UK Quantum Computing and Simulation Lab.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Profesor ekonomii zdrowia Aris Anelis i jego koledzy z London School of Hygiene and Tropical Medicine przeanalizowali wydatki firm farmaceutycznych. Efektem ich pracy jest opublikowany na łamach British Medical Journal artykuł, w którym stwierdzają, że wysokie ceny leków nie mają uzasadnienia w wydatkach ponoszonych przez koncerny farmaceutyczne na prace badawczo-rozwojowe.
Naukowcy stwierdzili, że w latach 1999–2018 piętnaście największych przedsiębiorstw farmaceutycznych wydało więcej pieniędzy na sprzedaż, marketing, administrację i koszty ogólne, niż na badania i rozwój. Jakby tego było mało, większość nowych leków, które powstały w badanym okresie nie oferowało żadnych lub zapewniało niewielkie korzyści kliniczne w porównaniu z lekami już istniejącymi. Dlatego też autorzy badań uważają, że sama zmiana struktury wydatków spowodowałaby pojawienie się większej liczby innowacyjnych leków, dostępnych po rozsądnych cenach. Uczeni uważają, że władze powinny podjąć wysiłki w celu zachęcenia firm farmaceutycznych do prowadzenia prac badawczo-rozwojowych zgodnych z interesem zdrowia publicznego.
W ciągu ostatniej dekady pojawiają się coraz liczniejsze zastrzeżenia co do polityki cenowej. W Stanach Zjednoczonych mediana ceny nowego leku przepisywanego na receptę zwiększyła się z około 1400 USD rocznie w roku 2008 do 150 000 USD rocznie w roku 2021, czytamy w artykule. Nieuzasadnione wzrosty cen dotyczą też leków już obecnych na ryku. Na przykład w USA latach 2007–2018 cena niektórych produktów insulinowych zwiększyła się ponaddwukrotnie, a z rządowego amerykańskiego raportu dowiadujemy się, że pomiędzy lipcem 2021 a lipcem 2022 ceny aż 1216 leków wzrosły powyżej poziomu inflacji. Ich cena średnio zwiększyła się aż o 31,6%.
Przemysł farmaceutyczny od dawna broni się twierdząc, że wysokie ceny spowodowane są wysokimi kosztami prac badawczo-rozwojowych. Gdy jednego z menedżerów firmy Johnson&Johnson zapytano, dlaczego lek na raka prostaty kosztuje 10 000 USD, odpowiedział, że z łatwymi do wyleczenia chorobami już sobie poradzono, a poszukiwania leków na schorzenia coraz trudniejsze w leczeniu są coraz bardziej kosztowne. Ponadto koncerny farmaceutyczne często podkreślają, że ich udziałowcy i inwestorzy mogą szybko wycofać swoje pieniądze, jeśli nie będą mieli wysokiego zwrotu z inwestycji i skierować te środki do mniej ryzykownych dziedzin gospodarki.
Anelis i jego zespół wykazali w swoim artykule, że w latach 1999–2018 łączne wpływy 15 największych firm farmaceutycznych świata wyniosły 7,7 bilionów dolarów. W tym czasie na sprzedaż, marketing, administrację i koszty ogólne przedsiębiorstwa przeznaczyły 2,2 biliona USD, a na prace badawczo-rozwojowe – 1,4 biliona dolarów. Nie do końca jest jednak jasne, co należy rozumieć pod poszczególnymi pozycjami. Na przykład firma może początkowo oferować po obniżonej cenie nowo zatwierdzony lek i zaliczyć koszty takiego działania do prac badawczych, podczas gdy w rzeczywistości jest to marketingowe testowanie rynku.
Co więcej, większość badanych firm przeznaczyło więcej pieniędzy na skupowanie swoich własnych akcji niż na badania i rozwój. Skupowanie własnych akcji ma zaś na celu podniesienie ich ceny i zapewnienie korzyści udziałowcom, w tym menedżerom firmy, których wynagrodzenie często jest uzależnione od kursów akcji. Śledztwo amerykańskiej Izby Reprezentantów wykazało na przykład, że w latach 2016–2020 czternaście ze wspomnianych firm wydało 577 miliardów USD na wykupowanie akcji i wypłacanie dywidendy, a na prace badawczo-rozwojowe przeznaczyły one 521 miliardów USD. W tym czasie całkowite wynagrodzenie menedżerów tych firm rosło w tempie 14% rocznie.
Autorzy pracy zauważają też, uzasadniając wysokie ceny leków kosztami prac badawczo-rozwojowych firmy ignorują fakt, że wiele z tych prac prowadzonych jest za publiczne pieniądze. TO zaś oznacza, że płacimy dwukrotnie za to samo: po raz pierwszy dofinansowując badania nad nowymi lekami, po za drugi zaś – kupując drogie leki.
Z artykułu dowiadujemy się też, że większość opracowywanych w ostatnich latach leków oferuje co najwyżej niewielkie korzyści. Jeszcze w latach 70. i 80. aż 16% nowych leków zatwierdzanych przez amerykańską FDA przynosiło istotne korzyści terapeutyczne w porównaniu z lekami już istniejącymi. Tymczasem z raportów sporządzonych w Niemczech i Francji wynika, że jedynie niewielki odsetek medykamentów wprowadzonych na rynek w ubiegłej dekadzie oferował znaczne korzyści kliniczne.
Wśród pozytywnych zjawisk autorzy badań zauważyli, że większość leków rozwijanych w latach 1997–2016 eksplorowało nowe mechanizmy oddziaływania na organizm. Jednocześnie jednak widać zmianę strategii firm farmaceutycznych, które rzadziej pracują nad lekami na rozpowszechnione choroby, które można sprzedawać na całym świecie w wielkich ilościach, a coraz częściej skupiają się na chorobach rzadkich lub lekach o wąskim zastosowaniu, które można drogo sprzedać.
Biorąc pod uwagę wyniki analizy, jej autorzy stwierdzają, że – przynajmniej teoretycznie – firmy farmaceutyczne mogłyby zaoferować znacznie lepsze leki i dokonać większych innowacji, gdyby tylko zmieniły strukturę wydatków. Nie musiałyby tych wydatków zwiększać, a przekierować pieniądze z finansowania marketingu, sprzedaży czy administracji na badania i rozwój. Jednak, ich zdaniem, taka zmiana podejścia jest mało prawdopodobna bez interwencji władz, które powinny pomyśleć o tym, jak zachęcić koncerny farmaceutyczne do innowacyjności i zaspokajania potrzeb zdrowia publicznego.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Komputery kwantowe mogą, przynajmniej teoretycznie, przeprowadzać obliczenia, które są poza zasięgiem tradycyjnych maszyn. Ich kluczowym elementem są splątane kwantowe bity, kubity. Splątanie jest jednak stanem niezwykle delikatnym, bardzo wrażliwym na wpływ czynników zewnętrznych, na przykład promieniowania kosmicznego. Powoduje ono, że średnio co 10 sekund dochodzi do katastrofalnego błędu i kwantowe układy scalone tracą dane. Może ono za jednym razem usunąć wszelkie dane z procesora nawet najbardziej zaawansowanej maszyny kwantowej.
Fizyk Quian Xu z University of Chicago i jego koledzy poinformowali o opracowaniu metody, która aż o 440 000 razy wydłuża czas pomiędzy błędami powodowanymi przez promieniowanie kosmiczne. Zatem mają one miejsce raz na 51 dni.
Badacze zaproponowali komputer kwantowy składający się z wielu układów scalonych z danymi, z których każdy posiada liczne nadprzewodzące kubity. Wszystkie te układy są połączone z układem pomocniczym, który zawiera dodatkowe kubity monitorujące dane. Wszystkie chipy korzystałyby ze standardowych metod korekcji błędów oraz dodatkowej korekcji błędów powodowanych przez promieniowanie kosmiczne. Dzięki temu, że dane są rozdzielone na różne układy, zniszczenia powodowane przez promieniowanie kosmiczne są ograniczane. Gdy już do nich dojdzie, układ pomocniczy, we współpracy z układami, których dane nie zostały uszkodzone przez promieniowanie, przystępuje do korekty i odzyskania utraconych danych. Komputer nie musi rozpoczynać pracy na nowo, gdy tylko niektóre układy utracą dane, Xu. Co więcej, metoda ta wykrywa i koryguje dane pojawiające się w układzie pomocniczym.
Autorzy badań twierdzą, że ich metoda wymaga zaangażowania mniejszej ilości zasobów oraz żadnych lub niewielkich modyfikacji sprzętowych w porównaniu z dotychczasowymi próbami ochrony komputerów kwantowych przed promieniowaniem kosmicznym. W przyszłości chcieliby ją przetestować na chmurze kwantowej IBM-a lub procesorze Sycamore Google'a.
Ze szczegółowym opisem metody można zapoznać się na łamach arXiv.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Aalto University, IQM Quantum Computers oraz VTT Technical Research Centre of Finland odkryli nowy nadprzewodzący kubit. Unimon bo o nim mowa, zwiększy dokładność obliczeń dokonywanych za pomocą komputerów kwantowych. Pierwsze bramki logiczne wykorzystujące unimony pracują z dokładnością 99,9%.
Nieliczne współczesne komputery kwantowe wciąż nie są wystarczająco wydajne i nie dostarczają wystarczająco dokładnych danych, by można było je zaprzęgnąć do obliczeń rozwiązujących praktyczne problemy. Są najczęściej urządzeniami badawczo-rozwojowymi, służącymi pracom nad kolejnymi generacjami komputerów kwantowych. Wciąż zmagamy się z licznymi błędami powstającymi w 1- i 2-kubitowych bramkach logicznych chociażby wskutek zakłóceń z otoczenia. Błędy te są na tyle poważne, że uniemożliwiają prowadzenie praktycznych obliczeń.
Naszym celem jest zbudowanie kwantowych komputerów, które nadawałyby się do rozwiązywania rzeczywistych problemów. To odkrycie jest ważnym kamieniem milowym dla IQM oraz znaczącym osiągnięciem na drodze ku zbudowaniu lepszych komputerów kwantowych, powiedział główny autor badań, profesor Mikko Möttönen z Aalto University i VTT, który jest współzałożycielem i głównym naukowcem IQM Quantum Computers.
Unimony charakteryzują się zwiększoną anharmonicznością, pełną odpornością na szumy wywoływane prądem stałym, zmniejszoną wrażliwością na zakłócenia magnetyczne oraz uproszczoną budową, która wykorzystuje pojedyncze złącze Josephsona w rezonatorze. Dzięki temu w jednokubitowej bramce o długości 13 nanosekund udało się uzyskać dokładność od 99,8 do 99,9 procent na trzech kubitach unimonowych. Dzięki wyższej anharmoniczności czyli nieliniowości niż w transmonach [to wcześniej opracowany rodzaj kubitów, który ma zredukowaną wrażliwość za zakłócenia ze strony ładunku elektrycznego – red.], możemy pracować z unimonami szybciej, co prowadzi do pojawiania się mniejszej liczby błędów na każdą operację, wyjaśnia doktorant Eric Hyyppä.
Na potrzeby badań fińscy naukowcy skonstruowali układy scalone, z których każdy zawierał trzy kubity unimonowe. W układach użyto głównie niobu, z wyjątkiem złącz Josephsona, które zbudowano z aluminium. Unimony są bardzo proste, a mimo to mają liczne zalety w porównaniu z transmonami. Sam fakt, że już pierwsze uzyskane unimony działały tak dobrze, pozostawia dużo miejsca na ich optymalizację i osiągnięcie ważnych kamieni milowych. W następnym kroku badań chcemy zapewnić jeszcze lepszą ochronę przed szumem i zademonstrować bramki dwukubitowe, mówi profesor Möttönen.
Więcej o unimonie można przeczytać na łamach Nature Communications.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Po ponad 20 latach pracy naukowcy odszyfrowali pełną strukturę kluczowej molekuły sygnałowej. Otwiera to drogę do opracowania nowych i lepszych leków na niektóre rodzaje nowotworów. Nad poznaniem pełnej struktury kinaz janusowych pracuje wiele zespołów na całym świecie. Udało się to grupie Christophera Garcii z Howard Hughes Medical Institute.
Garcia i jego koledzy pracowali nad tym zadaniem od ponad 2 dekad. Pod koniec ubiegłego roku spod ich mikroskopów elektronowych zaczęły wyłaniać się wyraźne obrazy poszczególnych elementów kinazy. A 8 grudnia doktor Naotaka Tsutsumi i magister Caleb Glassman wysłali mu e-mail z załączonym zdjęciem, na którym było wyraźnie widać molekułę przyłączoną do receptora. Garcia, który brał właśnie udział w spotkaniu, od razu pobiegł do laboratorium. Chciałem, byśmy szybko dokończyli prace, mówi.
Trójka naukowców pracowała od tej pory bez wytchnienia. To był prawdziwy wyścig pomiędzy wieloma świetnymi ośrodkami akademickimi na całym świecie. A my pędziliśmy do mety, stwierdził. W końcu 26 grudnia uczeni wysłali szczegółowy opis swojej pracy do redakcji Science. Wczoraj ukazał się artykuł i świat mógł zapoznać się z tak długo poszukiwaną dokładną strukturą molekuły.
Zespół Garcii nie tylko określił dokładną strukturę kinazy janusowej, ale również opisał mechanizm jej działania. To jedna z kluczowych kwestii biologii, mówi John O'shea immunolog z National Institutes of Health, który jest współautorem jednego z pierwszych leków blokujących kinazy janusowe.
Kinazy janusowe to jedne z podstawowych molekuł sygnałowych. Zbierają one sygnały spoza komórki i przekazują je do komórki. Naukowcy od wielu lat wiedzą, że nieprawidłowo działające kinazy janusowe są przyczyną różnych chorób. A niektóre mutacje prowadzące do nieprawidłowego działania tych kinaz znacząco upośledzają zdolność organizmu do zwalczania infekcji. Nieprawidłowo działające kinazy janusowe przyczyniają się do rozwoju nowotworów krwi, jak białaczka, oraz chorób autoimmunologicznych.
Dotychczas znaliśmy częściową strukturę tych kinaz, co pozwoliło na opracowanie inhibitorów kinaz, pomagających w leczeniu nowotworów czy artretyzmu. Jednak leki te powstały bez znajomości pełnej struktury kinaz i ich działania. Dlatego też większość współcześnie stosowanych leków nakierowanych na kinazy janusowe to broń obosieczna. Pomagają w leczeniu wielu chorób, od egzemy po COVID-19, ale mogą mieć też wiele skutków ubocznych.
Garcia po raz pierwszy próbował szczegółowo zobrazować kinazy janusowe w 1995 roku. Jednak to naprawdę trudne zadanie. Kinazy bardzo trudno jest uzyskać w warunkach laboratoryjnych. Jakby tego było mało, nie tworzą one łatwo kryształów, a kryształy są potrzebne, by za pomocą krystalografii rentgenowskiej określić strukturę badanej molekuły.
Przez lata uczeni mogli więc obserwować małe fragmenty kinaz, które nie składały się w całość. Przełom nastąpił przed kilku laty, wraz z udoskonaleniem kriomikroskopii elektronowej. Drugim istotnym elementem odniesionego sukcesu była decyzja Garcii i skupieniu się na badaniu mysiej kinazy janusowej, w miejsce mniej stabilnej kinazy ludzkiej. Dodatkowo naukowcy wprowadzili do mysiej kinazy mutację powodującą nowotwór, co dodatkowo ustabilizowało molekułę.
Dzięki temu uczeni byli w końcu w stanie dokładnie opisać strukturę kinazy JAK1 oraz mechanizm jej działań. Garcia ma nadzieję, że dzięki temu uda się w niedalekiej przyszłości opracować leki, które będą brały na cel wyłącznie nieprawidłowo działające kinazy janusowe, co zmniejszy liczbę skutków ubocznych, gdyż kinazy prawidłowo działające będą mogły niezakłócenie pracować.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.