Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Stworzyli czarną dziurę, potwierdzili przewidywania Hawkinga i zaobserwowali horyzont wewnętrzny

Rekomendowane odpowiedzi

Stephen Hawking przewidywał, że czarne dziury emitują promieniowanie jak ciało doskonale czarne. Emisja ta, zwana emisją Hawkinga, jest stała w czasie, a jej temperatura jest determinowana przez grawitację. Mimo, że przewidywania Hawkinga liczą sobie 50 lat, dotychczas nie udało się obserwacyjnie potwierdzić temperatury promieniowania. Prawdopodobnie jest ona niezwykle niska, w skali nanokelwinów lub mniej.

Naukowcy z Wydziału Fizyki Izraelskiego Instytut Technologii Technion stworzyli dźwiękową czarną dziurę, będącą analogiem rzeczywistych czarnych dziur. To system, z którego fale dźwiękowe nie mogą się wydostać.

W artykule opublikowanym na łamach Nature Physics naukowcy wykazali istnienie stacjonarnego promieniowania Hawkinga z takiej dziury.

Dziura o średnicy 0,1 mm powstała z 8000 atomów rubidu. Każdy pomiar ją niszczył, zatem naukowcy – chcąc obserwować ewolucję swojej czarnej dziury – musieli ją na nowo utworzyć, zmierzyć i znowu utworzyć. Eksperyment powtórzyli 97 000 razy, co odpowiadało 124 dniom obserwacji i pomiarów. W tym czasie udało im się zarejestrować 6 momentów spontanicznego promieniowania i potwierdzić, że jego temperatura oraz siła były stałe.

Profesor Jeff Steinhauer, który stał na czele zespołu badawczego, mówi, że emisja z dźwiękowej czarnej dziury składa się z fal dźwiękowych, a nie świetlnych. Atomy rubidu poruszają się szybciej niż prędkość dźwięku, więc dźwięk nie jest w stanie dotrzeć do horyzontu zdarzeń i uciec z dziury. Jednak poza horyzontem zdarzeń atomy poruszają się powoli, więc i dźwięk może się swobodnie przemieszczać.

Wyobraź sobie, że płyniesz pod prąd. Jeśli prąd porusza się szybciej od ciebie, nie możesz się przesuwać naprzód, jesteś spychany w tył. To właśnie dzieje się w czarnej dziurze, wyjaśnia uczony.

Hawking uważał, że promieniowanie czarnych dziur jest spontaniczne. Steinhauer i jego zespół potwierdzili to już podczas poprzednich badań. Obecnie chcieli sprawdzić, czy promieniowanie to jest też stałe, czyli czy nie zmienia się w czasie.
Promieniowania Hawkinga składa się z pary fotonów. Jeden z nich wpada w czarną dziurę, drugi z niej ucieka. Dlatego też Steinhauer i jego koledzy szukali podobnych par fal dźwiękowych. Gdy już je znaleźli, musieli jeszcze określić, czy między nimi istnieje korelacja. W jej poszukiwaniu przeprowadzili wspomniane 97 000 powtórzeń eksperymentu.

Uzyskane przez Izraelczyków wyniki są zgodne z przewidywaniami Hawkinga. Wszystko wskazuje na to, że promieniowanie jest stacjonarne. Oczywiście odnosi się do dźwiękowej czarnej dziury stworzonej w laboratorium, jednak naukowcy uważają, że dalsze prace teoretyczne pozwolą stwierdzić, iż wyniki te można też odnieść do czarnych dziur.

Z naszych badań wynikają ważne pytania, gdyż obserwowaliśmy cały cykl życiowy odpowiednika czarnej dziury, zatem widzieliśmy, jak rozpoczynało się promieniowanie Hawkinga. W przyszłości ktoś może porównać uzyskane przez nas wyniki z tym, co mówią teorie na temat procesów zachodzących w czarnych dziurach. Czy rzeczywiście promieniowanie Hawkinga bierze się z niczego.

W pewnym momencie podczas eksperymentów promieniowania otaczające laboratoryjną czarną dziurę stało się bardzo silne. Doszło do tego, czy czarna dziura utworzyła horyzont wewnętrzny. Jego istnienie jest zgodnie z teorią Einsteina. Horyzont wewnętrzny znajduje się wewnątrz czarnej dziury i oddziela obszar bliższy centrum temu dalszemu. Wewnątrz tego horyzontu grawitacja jest znacznie mniejsza, więc znajdujące się tam obiekty mogą się swobodnie przemieszczać. Nie opadają na centrum czarnej dziury. Nie są jednak w stanie wydostać się z czarnej dziury, gdyż nie mogą przekroczyć wewnętrznego horyzontu w stronę horyzontu zdarzeń.

Horyzont zdarzeń to zewnętrzna sfera czarnej dziury. Wewnątrz znajduje się jeszcze jedna mała sfera, horyzont wewnętrzny. Jeśli tam trafisz to nadal jesteś uwięziony w czarnej dziurze, jednak nie odczuwasz dziwacznych praw fizyki w niej obowiązujących. Panuje tam bardziej „normalne środowisko”, oddziaływanie grawitacyjne jest tam znacznie słabsze, wyjaśnia Steinhauer.

Niektórzy fizycy przewidywali, że gdy analog czarnej dziury tworzy wewnętrzny horyzont, rośnie emisja z czarnej dziury. Takie właśnie zjawisko zaobserwował zespół Seinhauera.


« powrót do artykułu
  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
3 godziny temu, KopalniaWiedzy.pl napisał:

Naukowcy z Wydziału Fizyki Izraelskiego Instytut Technologii Technion stworzyli dźwiękową czarną dziurę, będącą analogiem rzeczywistych czarnych dziur. To system, z którego fale dźwiękowe nie mogą się wydostać.

Już dawno większy bredni nie czytałem co za trolowanie w wykonaniu KW

Nowy poziom absurdu - dźwiękowa czarna dziura. Lepsza by była tylko chyba elektryczna czarna dziura. Dźwięk ma tyle wspólnego z grawitacją, co woda święcona ze spalaniem czarnej materii.     

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Od XIX wieku nauka wie, że zdolność materiałów do absorbowania promieniowania elektromagnetycznego jest równoważna ich zdolności do emitowania tego promieniowania. Zjawisko to odkrył w 1859 roku Gustaw Kirchhoff, który sformułował prawo promieniowania cieplnego nazwane jego nazwiskiem. W ostatniej dekadzie naukowcy zaczęli poszukiwać metamateriałów zdolnych do złamania tego prawa. Udało się przed 2 laty, jednak obserwowane zjawisko było słabe. Teraz naukowcy z Pennsylvania State University donieśli o „dramatycznym” odejściu od prawa Kirchhoffa. Daje to nadzieję, że w przyszłości osiągnięcia tego typu można będzie wykorzystać w praktyce.
      Możliwość silnego naruszenia prawa Kirchhoffa to nie tylko nowy sposób na kontrolowanie promieniowania cieplnego, to też metoda znaczącego poprawienia działania urządzeń do wytwarzania użytecznej energii czy jej rejestrowania. Na przykład ogniwa fotowoltaiczne muszą – zgodnie z prawem Kirchhoffa – wyemitować energię z powrotem w kierunku Słońca. Ta energia jest dla nas stracona. Jeśli jednak ogniwa słoneczne emitowałyby tę energię w innym kierunku niż obecnie, moglibyśmy umieścić tam kolejne ogniwo, które zaabsorbowałoby część tej energii, zwiększając efektywność całego panelu. Taka strategia zbliżyłaby nas do pozyskiwania energii słonecznej z wydajnością bliską granicy wyznaczonej przez prawa termodynamiki, mówi główny autor badań Zhenong Zhang.
      Naukowcy z Penn State stworzyli materiał, który składa się z pięciu 440-nanometrowych warstw arsenku galu indu (InGaAs) domieszkowanych elektronowo. Im głębiej położona była warstwa, tym większe było domieszkowanie. Całość umieszczono na 100-nanometrowej warstwie srebra, a całość przeniesiono na krzemowe podłoże. Tak przygotowaną próbkę podgrzano do temperatury 267 stopni Celsjusza i poddano oddziaływaniu pola magnetycznego o natężeniu 5T. W takich warunkach stosunek zdolności absorpcji do emisji wyniósł 0,43, podczas gdy zgodnie z prawem Kirchhoffa powinien wynieść 1. Co więcej, złamanie symetrii zaobserwowano w szerokim zakresie kątów padania promieniowania oraz w zakresie promieniowania podczerwonego rozciągającym się od 13 do 23 mikrometrów.
      Autorzy badań uważają, że dalszy postęp na tym polu może doprowadzić do stworzenia nowej klasy diod czy tranzystorów, bardziej efektywnych ogniw fotowoltaicznych i innych urządzeń związanych z zarządzaniem energią cieplną.
      Źródło: Observation of Strong Nonreciprocal Thermal Emission, https://arxiv.org/pdf/2501.12947

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Kosmiczna niezwykłość, która rzuca wyzwanie naszemu rozumieniu wszechświata, pokazuje, jaki los może spotkać Drogę Mleczną. Międzynarodowy zespół naukowy, który pracował pod kierunkiem ekspertów z CHRIST University w Bangalore, badał olbrzymią galaktykę spiralną położoną w odległości miliarda lat świetlnych od Ziemi. W centrum galaktyki znajduje się supermasywna czarna dziura o masie miliardy razy większej od masy Słońca, która napędza gigantyczne dżety radiowe o długości 6 milionów lat świetlnych.
      Badana galaktyka jest jedną z największych znanych galaktyk spiralnych. Równie wyjątkowe są jej dżety. Tak potężne znajdowano dotychczas niemal wyłącznie w galaktykach eliptycznych, nie spiralnych. To oznacza, że potencjalnie i Droga Mleczna mogłaby wygenerować w przyszłości tak potężne dżety. Jeśli by do tego doszło, mogłoby to oznaczać masowe wymieranie na Ziemi w wyniku intensywnego promieniowania
      To odkrycie skłania nas do przemyślenia ewolucji galaktyk, zwiększania masy czarnych dziur i oraz sposobu, w jaki kształtują one swoje otoczenie. Jeśli galaktyka spiralna jest w stanie nie tylko przetrwać, ale i rozwijać się w tak ekstremalnych warunkach, co to oznacza dla przyszłości Drogi Mlecznej? Czy nasza galaktyka doświadczy w przyszłości takiego wysokoenergetycznego zjawiska, które będzie miało poważne konsekwencje dla życia?, zastanawia się główny autor badań, profesor Joydeep Bagchi.
      Badacze wykorzystali Teleskop Hubble'a, Giant Metrewave Radio Telescope oraz Atacama Large Millimeter Wave Array za pomocą których przyjrzeli się galaktyce 2MASX J23453268−0449256. Ma ona średnicę 3-krotnie większą od Drogi Mlecznej. W jej wnętrzu odkryli supermasywną czarną dziurę emitującą potężne dżety. Właśnie te dżety są najbardziej zaskakujące. Obowiązuje bowiem pogląd, zgodnie z którym tak aktywne dżety powinny zniszczyć delikatną strukturę galaktyki spiralnej.
      Tymczasem 2MASX J23453268−0449256 ma dobrze widoczne ramiona, niewielką poprzeczkę oraz otaczający ją niezakłócony wewnętrzny pierścień gwiazd o średnicy 4,4 kpc (ponad 14 000 lat świetlnych). Galaktykę otacza rozległe halo gorącego gazu emitującego promieniowanie rentgenowskie. Halo powoli stygnie, jednak potężne dżety działają jak piec, uniemożliwiając tworzenie się tam gwiazd, pomimo wystarczającej do ich powstania ilości materiału.
      Centralna czarna dziura w Drodze Mlecznej – Sagittarius A (Sgr A*) – ma masę 4 milionów mas Słońca i jest wyjątkowo spokojna. Jednak, jak mówią badacze, może się to zmienić, jeśli wchłonie duża chmurę gazu, gwiazdę czy galaktykę karłowatą. W takiej sytuacji mogłyby pojawić się duże dżety. Takie zjawiska, zwane rozerwaniami pływowymi (TDE – tidal disruption event), obserwowano już w innych galaktykach. Gdyby Sgr A* zaczęła napędzać dżety, to ich wpływ zależałby od siły, kierunku i emisji energii. Taki dżet skierowany w pobliże Układu Słonecznego mógłby pozbawić planety atmosfery, doprowadzić do uszkodzeń DNA w wyniku zwiększonego promieniowania. pozbawić Ziemię warstwy ozonowej i doprowadzić do masowego wymierania.
      Autorzy badań zauważyli też, że 2MASX J23453268−0449256 zawiera 10-krotnie więcej ciemnej materii niż Droga Mleczna. Jej obecność może być kluczowa dla stabilności tej szybko obracającej się galaktyki. Fascynującym tematem przyszłych badań może być przeanalizowanie zależności pomiędzy ciemną materią, aktywnością czarnej dziury a strukturą tej galaktyki.
      Ze szczegółami można zapoznać się na łamach Monthly Notices of the Royal Astronomical Society.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Czarne dziury od dziesięcioleci fascynują naukowców, pisarzy i zwykłych zjadaczy chleba. Zgodnie z ogólną teorią względności Einsteina, wszystko, co dostaje się do czarnej dziury opada do jej centrum i zostaje tam zniszczone przez gigantyczną grawitację. Centrum to, zwane osobliwością, to nieskończenie mały punkt, w którym przyspieszenie grawitacyjne jest nieskończone. Tam skupia się cała materia czarnej dziury.
      Na łamach Physical Review Letters ukazał się artykuł autorstwa Steffena Gielena z University of Sheffield i Lucíi Menéndez-Pidal z Universidad Complutense de Madrid, którzy stwierdzają, że osobliwość nie oznacza końca, a raczej nowy początek. Tym nowym początkiem mają być białe dziury, w które zmieniają się czarne dziury.
      Para uczonych wykorzystała mechanikę kwantową oraz uproszczony teoretyczny model płaskiej dwuwymiarowej czarnej dziury. Od dawna zastanawiano się, czy mechanika kwantowa może zmienić nasze rozumienie czarnych dziur i pozwolić nam zajrzeć w głąb ich prawdziwej natury. Z punktu widzenia mechaniki kwantowej czas nie może się skończyć, gdyż układy ciągle zmieniają się i ewoluują, stwierdza Gielen. Naukowcy pokazali jak, za pomocą praw mechaniki kwantowej, osobliwość wewnątrz czarnej dziury zostaje zastąpiona przez wielki region fluktuacji kwantowych, niewielkich zmian energii, gdzie czas i przestrzeń nie mają końca. W regionie tym czas i przestrzeń zmieniają się w nową fazę, zwaną białą dziurą. To obszar, w którym przestrzeń zaczyna funkcjonować przeciwnie do czarnej dziury. W ten sposób białe dziury mogą być miejscem, gdzie czas się rozpoczyna. O ile czarne dziury wszystko pochłaniają, białe dziury mają wyrzucać z siebie materię, a nawet czas, z powrotem do wszechświata.
      O ile, zwykle, czas jest postrzegany zawsze w odniesieniu do obserwatora, w naszych badaniach czas pochodzi od tajemniczej ciemnej energii, która wypełnia wszechświat. Proponujemy, by czas był mierzony przez ciemną energię obecną wszędzie we wszechświecie i odpowiedzialną za jego aktualne rozszerzanie się, dodaje Gielen. W artykule ciemna energia została użyta niemal w roli punktu odniesienia, a czas i energia są uzupełniającymi się bytami.
      To jednak dopiero początek. Hipotetycznie może istnieć obserwator – jakiś hipotetyczny byt – który wejdzie do czarnej dziury, przejdzie przez to, co opisujemy jako osobliwość i pojawi się po drugiej stronie białej dziury. To wysoce abstrakcyjne, ale w teorii może się wydarzyć, stwierdza uczony.
      Jednak odkładając na bok tego hipotetycznego obserwatora, niezwykle istotnym elementem nowych rozważań jest sugestia, że istnieje głęboka łączność pomiędzy naturą czasu w jego najbardziej podstawowej formie, a ciemną energią, która wypełnia kosmos i rządzi jego rozszerzaniem się. Nowe badania sugerują też inne podejście do prób połączenia grawitacji i mechaniki kwantowej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Supermasywna czarna dziura w centrum Drogi Mlecznej jest bardzo aktywna. Naukowcy z Northwestern University wykorzystali Teleskop Webba do uzyskania najdłuższego i najbardziej szczegółowego obrazu Sagittariusa A*. Dowiedzieli się, że w dysku akrecyjnym wokół dziury bez przerwy mają miejsce rozbłyski. Niektóre z nich to bardzo słabe migotania, trwające sekundy. Inne, potężne i oślepiające, można obserwować codziennie. Są jeszcze inne, niezwykle słabe, które trwają miesiącami.
      Nowe odkrycia pozwolą lepiej zrozumieć naturę czarnych dziur i ich interakcje z otoczeniem, a także dynamikę i ewolucję naszej galaktyki. Spodziewamy się, że do rozbłysków dochodzi w pobliżu wszystkich supermasywnych czarnych dziur. Jednak nasza czarna dziura jest unikatowa. Tam się zawsze coś gotuje, zawsze widać jakąś aktywność, wydaje się, że ona nigdy nie jest spokojna. Obserwowaliśmy ją wielokrotnie w 2023 i 2024 roku i przy każdej obserwacji odnotowywaliśmy zmiany. Za każdym razem widzieliśmy coś innego, to naprawdę imponujące. Nic nigdy nie było takie samo, mówi profesor fizyki i astronomii Farhad Yusef-Zadeh, który specjalizuje się w badaniu centrum Drogi Mlecznej.
      Uczony wraz z zespołem wykorzystali urządzeni NIRCam na JWST, które może jednocześnie prowadzić obserwacje w dwóch zakresach podczerwieni. W sumie zebrali 48 godzin obserwacji, które prowadzili co 8–10 godzin w ciągu roku. To pozwoliło im na odnotowywanie zmian w czasie. Sgr A* okazała się bardziej aktywna, niż naukowcy się spodziewali. W dysku akrecyjnym ciągle dochodziło do rozbłysków o różnej jasności i czasie trwania. W ciągu doby miało miejsce 5–6 dużych rozbłysków, pomiędzy którymi naukowcy obserwowali rozbłyski mniejsze. W danych widzimy wciąż zmieniającą się, gotującą jasność. I nagle, bum! Wielki rozbłysk. A później się uspokaja. Nie zauważyliśmy żadnego wzorca. Wydaje się, że to proces przypadkowy. Profil aktywności czarnej dziury był za każdym razem inny i niezwykle ekscytujący, dodaje uczony.
      Naukowcy nie rozumieją procesów zachodzących w dyskach akrecyjnych czarnych dziur. Profesor Yusef-Zadeh podejrzewa dwa różne mechanizmy. Jeśli dysk przypomina rzekę, to krótkotrwałe słabe rozbłyski są jak niewielki przypadkowe fale, a większe długotrwałe rozbłyski jak fale pływowe powodowane przez bardziej znaczące wydarzenia.
      NIRCam pracuje w zakresach 2,1 i 4,8 mikrometrów. Jednym z najbardziej niespodziewanych odkryć było spostrzeżenie, że zjawiska widoczne w krótszym zakresie fal zmieniały jasność na krótko przed wydarzeniami z dłuższego zakresu fal. Po raz pierwszy obserwujemy taką różnicę w czasie podczas obserwacji w tych długościach fali. Obserwowaliśmy je jednocześnie w NIRCam i zauważyliśmy, że dłuższe fale spóźniały się w stosunku do krótszych od niewielką ilość czasu, od kilku sekund do około 40 sekund, dziwi się Yusef-Zadeh.
      To opóźnienie dostarcza dodatkowych informacji. Może ono wskazywać, że cząstki w miarę trwania rozbłysku tracą energię, a utrata ta ma miejsce szybciej w krótszych zakresach fali. Takie zmiany mogą zachodzić, gdy cząstki poruszają się po spirali wokół linii pola magnetycznego.
      Badacze, chcąc to wyjaśnić, mają nadzieję na przeprowadzenie dłuższych obserwacji. Profesor Yusef-Zadeh już złożył prośbę o zgodę na nieprzerwane wykorzystanie NIRCam przez 24 godziny. Dłuższy czas obserwacji pozwoli na usunięcie z nich zakłóceń i poprawienie rozdzielczości. Gdy obserwuje się tak słabe rozbłyski, trzeba zmagać się z zakłóceniami. Jeśli moglibyśmy prowadzić obserwacje nieprzerwanie przez 24 godziny, moglibyśmy zredukować poziom szumu i zobaczyć szczegóły, których obecnie nie widzimy, wyjaśnia uczony.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przed laty dowiedzieliśmy się, że konstelacja satelitów Starlink emituje tak dużo promieniowania w zakresie fal radiowych, iż może to zakłócać badania w dziedzinie radioastronomii. Nowe obserwacje przeprowadzone za pomocą radioteleskopu LOFAR (Low Frequency Array) – największego na Ziemi radioteleskopu pracującego w zakresie niskich częstotliwości – wykazały, że druga generacja Starlinków w niezamierzony sposób emituje 32-krotnie więcej promieniowania radiowego niż generacja pierwsza. Grozi to oślepieniem radioteleskopów, co może zakłócić jedną z najważniejszych dziedzin nauki zajmujących się badaniem wszechświata.
      W ostatnich latach gwałtownie zwiększyła się liczba satelitów umieszczonych na niskiej orbicie okołoziemskiej. W ciągu ostatnich pięciu lat firmy takie jak SpaceX czy OneWeb wystrzeliły setki i tysiące satelitów, głównie komunikacyjnych. Z ich planów wynika, że do końca dekady liczba satelitów na orbicie przekroczy 100 000. To zaś prowadzi do zwiększenia sztucznej emisji w zakresie fal radiowych, co zagraża badaniom astronomicznym.
      Za pomocą LOFAR rozpoczęliśmy program monitorowanie niezamierzonych emisji z satelitów należących do różnych konstelacji. Nasze obserwacje pokazały, że satelity Starlink drugiej generacji charakteryzuje silniejsza emisja i w szerszym zakresie promieniowania radiowego, niż satelitów pierwszej generacji, mówi Cees Bassa z Holenderskiego Instytutu Radioastronomii (ASTRON).
      To pokazuje, jak ważne są ścisłe regulacje dotyczące niezamierzonej emisji z satelitów, by nie zakłócały one badań radioastronomicznych, które stanowią podstawę dla naszego poznania wszechświata. Ludzkość zbliża się do punktu, w którym będziemy musieli podjąć działania na rzecz zachowania nieba na potrzeby badań wszechświata prowadzonych z Ziemi. Firmy telekomunikacyjne nie mają zamiaru generować tej emisji, więc jej minimalizowanie powinno być priorytetem. Starlink nie jest jedynym wielkim graczem na niskiej orbicie okołoziemskiej, ale może być tą konstelacją, która ustanowi obowiązujące tam standardy, dodaje Cees Bassa.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...