
Ziemię można obserwować z ponad 1000 planet pozasłonecznych
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Kosmiczna niezwykłość, która rzuca wyzwanie naszemu rozumieniu wszechświata, pokazuje, jaki los może spotkać Drogę Mleczną. Międzynarodowy zespół naukowy, który pracował pod kierunkiem ekspertów z CHRIST University w Bangalore, badał olbrzymią galaktykę spiralną położoną w odległości miliarda lat świetlnych od Ziemi. W centrum galaktyki znajduje się supermasywna czarna dziura o masie miliardy razy większej od masy Słońca, która napędza gigantyczne dżety radiowe o długości 6 milionów lat świetlnych.
Badana galaktyka jest jedną z największych znanych galaktyk spiralnych. Równie wyjątkowe są jej dżety. Tak potężne znajdowano dotychczas niemal wyłącznie w galaktykach eliptycznych, nie spiralnych. To oznacza, że potencjalnie i Droga Mleczna mogłaby wygenerować w przyszłości tak potężne dżety. Jeśli by do tego doszło, mogłoby to oznaczać masowe wymieranie na Ziemi w wyniku intensywnego promieniowania
To odkrycie skłania nas do przemyślenia ewolucji galaktyk, zwiększania masy czarnych dziur i oraz sposobu, w jaki kształtują one swoje otoczenie. Jeśli galaktyka spiralna jest w stanie nie tylko przetrwać, ale i rozwijać się w tak ekstremalnych warunkach, co to oznacza dla przyszłości Drogi Mlecznej? Czy nasza galaktyka doświadczy w przyszłości takiego wysokoenergetycznego zjawiska, które będzie miało poważne konsekwencje dla życia?, zastanawia się główny autor badań, profesor Joydeep Bagchi.
Badacze wykorzystali Teleskop Hubble'a, Giant Metrewave Radio Telescope oraz Atacama Large Millimeter Wave Array za pomocą których przyjrzeli się galaktyce 2MASX J23453268−0449256. Ma ona średnicę 3-krotnie większą od Drogi Mlecznej. W jej wnętrzu odkryli supermasywną czarną dziurę emitującą potężne dżety. Właśnie te dżety są najbardziej zaskakujące. Obowiązuje bowiem pogląd, zgodnie z którym tak aktywne dżety powinny zniszczyć delikatną strukturę galaktyki spiralnej.
Tymczasem 2MASX J23453268−0449256 ma dobrze widoczne ramiona, niewielką poprzeczkę oraz otaczający ją niezakłócony wewnętrzny pierścień gwiazd o średnicy 4,4 kpc (ponad 14 000 lat świetlnych). Galaktykę otacza rozległe halo gorącego gazu emitującego promieniowanie rentgenowskie. Halo powoli stygnie, jednak potężne dżety działają jak piec, uniemożliwiając tworzenie się tam gwiazd, pomimo wystarczającej do ich powstania ilości materiału.
Centralna czarna dziura w Drodze Mlecznej – Sagittarius A (Sgr A*) – ma masę 4 milionów mas Słońca i jest wyjątkowo spokojna. Jednak, jak mówią badacze, może się to zmienić, jeśli wchłonie duża chmurę gazu, gwiazdę czy galaktykę karłowatą. W takiej sytuacji mogłyby pojawić się duże dżety. Takie zjawiska, zwane rozerwaniami pływowymi (TDE – tidal disruption event), obserwowano już w innych galaktykach. Gdyby Sgr A* zaczęła napędzać dżety, to ich wpływ zależałby od siły, kierunku i emisji energii. Taki dżet skierowany w pobliże Układu Słonecznego mógłby pozbawić planety atmosfery, doprowadzić do uszkodzeń DNA w wyniku zwiększonego promieniowania. pozbawić Ziemię warstwy ozonowej i doprowadzić do masowego wymierania.
Autorzy badań zauważyli też, że 2MASX J23453268−0449256 zawiera 10-krotnie więcej ciemnej materii niż Droga Mleczna. Jej obecność może być kluczowa dla stabilności tej szybko obracającej się galaktyki. Fascynującym tematem przyszłych badań może być przeanalizowanie zależności pomiędzy ciemną materią, aktywnością czarnej dziury a strukturą tej galaktyki.
Ze szczegółami można zapoznać się na łamach Monthly Notices of the Royal Astronomical Society.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Zwierzęta są nie tylko mieszkańcami Ziemi, ale też jej architektami, kształtującymi krajobraz, w którym żyją. Termity tworzą wysokie kopce i rozległe podziemne korytarze, hipopotamy drążą ścieżki i kanały, a bobry tworzą rozległe mokradła. Dotychczas jednak badania nad zwierzęcymi architektami krajobrazu skupiały się na konkretnych pojedynczych gatunkach. Profesor Gemma Harvey i jej zespół z Queen Mary University w Londynie opublikowali na łamach PNAS pierwszą globalną syntezę wiedzy o takich gatunków. Uczeni zidentyfikowali 603 gatunki, rodzaje i rodziny, które wpływają na procesy toczące się na powierzchni Ziemi.
Setki gatunków owadów, ssaków, ryb, ptaków czy płazów w znaczący sposób kształtują swoje środowisko. Najczęściej są to przykłady bardzo nieoczywiste. Okazuje się na przykład, że łososie podczas tarła przemieszczają tyle osadów, ile przemieszcza się podczas powodzi. Zwierzęta słodkowodne odgrywają zresztą olbrzymią rolę w kształtowaniu środowiska. Mimo, że wody słodkie zajmują jedynie 2,4% powierzchni planety, to żyje w nich ponad 30% ze zidentyfikowanych gatunków zwierzęcych architektów.
Autorzy badań ostrożnie obliczają, że energia włożona przez te gatunki w kształtowanie terenu wynosi co najmniej 76 000 GJ, czyli tyle, co energia setek tysięcy potężnych powodzi. To daje wyobrażenie, jak wielką rolę odgrywają zwierzęta. A jest to liczba z całą pewnością znacząco zaniżona, gdyż mamy poważne luki w wiedzy, szczególnie tej dotyczące obszarów tropikalnych i subtropikalnych, gdzie bioróżnorodność jest naprawdę duża, a liczba przeprowadzonych badań ograniczona.
Dużą rolę w kształtowaniu krajobrazu odgrywają na przykład termity, których kopce w Brazylii pokrywają tysiące kilometrów kwadratowych terenu. Termity czy inni architekci krajobrazu – mrówki – są jednak bardzo rozpowszechnione. Około 1/3 ze wspomnianych w pracy gatunków to gatunki rzadkie, endemiczne lub zagrożone. Jeśli one znikną, dojdzie też do zatrzymania procesów, których są autorami. Będzie to nie tylko strata dla ludzkości, która nigdy nie pozna istoty tych procesów, ale też olbrzymie zagrożenie dla ekosystemów, dla których wiele z tego typu zjawisk odgrywa kluczową rolę.
Nasze badania pokazują, że rola zwierząt w kształtowaniu krajobrazu Ziemi jest znacznie większa, niż sądziliśmy. Od bobrów tworzących mokradła, po mrówki budujące kopce z Ziemi, procesy te mają kluczowe znaczenie dla środowiska. Doprowadzając do utraty bioróżnorodności ryzykujemy ich utratę, mówi profesor Harvey.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Po raz pierwszy przeprowadzono trójwymiarowe obserwacje atmosfery planety pozasłonecznej. Dokonał tego międzynarodowy zespół złożony z naukowców ze Szwajcarii, Francji, Hiszpanii, Chile, Kanady, Szwecji, USA i Portugalii wykorzystując wszystkie cztery duże teleskopy tworzące Very Large Telescope (VLT) Europejskiego Obserwatorium Południowego. Celem badań był ultragorący jowisz WASP-121b, położony 900 lat świetlnych od Ziemi w Gwiazdozbiorze Rufy. Znajduje się tak blisko gwiazdy, że obiega ją w 30 godzin.
Niezwykłą atmosferę WASP-121b opisywaliśmy wcześniej w tekście Potężny wiatr i deszcz z kamieni szlachetnych, pierwszy dokładny obraz nocnej strony egzoplanety. Teraz udało się ją zbadać w 3D.
Ultragorące jowisze, ekstremalna klasa planet nieobecna w Układzie Słonecznym, dają wyjątkowy wgląd w procesy atmosferyczne. Ekstremalne różnice temperatur pomiędzy stroną dzienną a nocną każą zadać sobie fundamentalne pytanie: jak jest tam rozłożona energia? Aby na nie odpowiedzieć, musimy obserwować trójwymiarową strukturę ich atmosfer, szczególnie zaś ich cyrkulację pionową, która może posłużyć jako test zaawansowanych Globalnych Modeli Cyrkulacji, stwierdzili autorzy badań.
Naukowcy zajrzeli w głąb atmosfery planety i zauważyli wiatry wiejące w różnych jej warstwach. Stworzyli dzięki temu trójwymiarową najbardziej szczegółową mapę atmosfery egzoplanety.
To, co zobaczyliśmy, zaskoczyło nas. Prąd strumieniowy niesie materiał wokół równika planety, a w niższych warstwach atmosfery ma miejsce inny przepływ, który przemieszcza gazy ze strony gorącej na zimną. Nigdy wcześniej, na żadnej planecie, nie obserwowaliśmy takiego klimatu, mówi Julia V. Seidel z francuskiego Observatoire de la Côte d’Azur. Zaobserwowany prąd strumieniowy rozciąga się na połowę planety, znacząco przyspieszając i gwałtownie skłębiając wysokie partie atmosfery, gdy przekracza gorącą stronę planety. W porównaniu z nim, nawet najpotężniejsze huragany Układu Słonecznego wydają się spokojnymi podmuchami, dodaje Seidel.
VLT pozwolił nam na jednoczesne śledzenie trzech różnych warstw atmosfery, cieszy się Leonardo A. dos Santos ze Space Telescope Science Institute w USA. Uczeni śledzili przemieszczanie się w atmosferze żelaza, sodu i wodoru, dzięki czemu mogli obserwować dolną, średnią i górną warstwę. Tego typu obserwacje trudno jest wykonać za pomocą teleskopów w przestrzeni kosmicznej, co pokazuje, jak ważne są naziemne badania egzoplanet, dodaje uczony.
Niespodzianką była obecność tytanu, który zauważono pod obserwowanym prądem strumieniowym. Wcześniejsze badania nie wykazały obecności tego pierwiastka. Prawdopodobnie dlatego, że jest ukryty w głębokich warstwach atmosfery.
Niezwykłym osiągnięciem jest możliwość tak szczegółowego badania atmosfery planet położonych tak daleko od Ziemi, ich składu chemicznego i wzorców pogodowych. Jednak do zbadania egzoplanet wielkości Ziemi konieczne będą większe teleskopy. Jednym z nich może być Extremely Large Telescope (ELT), budowany przez Europejskie Obserwatorium Południowe na pustyni Atacama.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Badania próbek asteroidy Bennu dostarczonych na Ziemię przez misję OSIRIS-REx wykazały, że znajdują się tam molekuły, które na Ziemi są niezbędnymi składnikami do powstania życia. Znaleziono też ślady świadczące o obecności słonej wody. Mogła ona być miejscem, w którym dochodziło do interakcji i łączenia się tych molekuł.
NASA zastrzega, że odkrycie nie jest równoznaczne z odkryciem życia na asteroidzie. Sugeruje ono jednak, że we wczesnym Układzie Słonecznym powszechnie istniały warunki niezbędne do powstania życia, a to zwiększa prawdopodobieństwo znalezienia go na innych ciałach niebieskich.
Na łamach Nature i Nature Astronomy ukazały się dwa artykuły, w których naukowcy z NASA i innych instytucji – zarówno z USA, jak i Niemiec, Japonii, Francji, Wielkiej Brytanii czy Australii – omawiają wyniki swoich badań.
W Nature Astronomy zespół prowadzony przez Daniela P. Glavina z NASA informuje, że na asteroidzie zidentyfikowano 14 z 20 podstawowych (kanonicznych) aminokwasów białkowych, z których powstają białkna na Ziemi oraz wszystkie pięć podstawowych zasad azotowych nukleotydów, które ziemskie organizmy żywe wykorzystują do przechowywania i przekazywania informacji genetycznej. Odnotowano też bardzo wysoki poziom amoniaku. Jest on bardzo ważny z punktu widzenia biologii, gdyż reaguje z formaldehydem – również znalezionym w próbkach z Bennu – i w odpowiednich warunkach tworzy bardziej złożone molekuły, jak aminokwasy.
Wszystkie elementy niezbędne do powstania życia, które znaleziono na Bennu, zidentyfikowano już wcześniej na innych skałach pochodzenia kosmicznego. Tym razem jednak mamy dziewicze próbki pobrane w przestrzeni kosmicznej, co wspiera hipotezę mówiącą, że obiekty, które powstały z dala od Słońca, mogły być waźnym źródłem rozprzestrzeniania się życiodajnych molekuł po Układzie Słonecznym.
Glavin i jego koledzy szukali molekuł niezbędnych do powstania życia. Tymczasem Tim J. McCoy, kurator zbiorów meteorytów z Narodowego Muzeum Historii Naturalnej, szukał na Bennu informacji o środowisku, w jakim molekuły te powstały. Wraz z zespołem informuje na łamach Nature o znalezieniu 11 minerałów, które powstają, gdy zawierające sole woda odparowuje przez długi czas, pozostawiając po sobie kryształy soli. Podobne co na Bennu solanki prawdopodobnie istnieją na planecie karłowatej Ceres oraz księżycu Saturna, Enceladusie.
Naukowcy już wcześniej wykrywali na znalezionych na Ziemi meteorytach różne produkty takiego odparowywania, jednak dotychczas nie mieli okazji badać ostatecznych produktów takiego odparowywania trwającego przez tysiące lub więcej lat. Na Bennu znaleziono też kilka minerałów, w tym sodę naturalną, tzw. tronę, których nigdy wcześniej nie zaobserwowano na próbkach pochodzących spoza Ziemi.
Badania dostarczają wielu nowych informacji, ale pozostawiają bez odpowiedzi liczne pytania. Niemal wszystkie aminokwasy są chiralne, a więc występują w dwóch wariantach, będących swoim lustrzanym odbiciem. Organizmy żywe na Ziemi wykorzystują wyłącznie konformację L- (są lewostronne). Tymczasem na Bennu występowały one w postaci mieszaniny racemicznej, czyli zawierającej równe ilości obu wariantów. To najprawdopodobniej oznacza, że na wczesnej Ziemi aminokwasy również występowały w postaci takich mieszanin. Zatem wciąż jest tajemniczą, dlaczego życie wybrało lewo-, a nie prawostronność.
Misja OSIRIS-REx została wystrzelona w 2016 roku. W 2020 informowaliśmy, że padła ofiarą własnego sukcesu i pobrała tak dużo próbek, iż pojemnik się nie zamyka, więc NASA musi znaleźć awaryjne rozwiązanie problemu. Próbki trafiły na Ziemię w 2023 roku. W międzyczasie zaś, gdy było wiadomo, że misja OSIRIS-REx z powodzeniem pobrała próbki z Bennu i gdy rozpoczął się powrót pojazdu, specjaliści zaczęli zastanawiać się, co dalej. Plan misji zakładał bowiem od początku, że OSIRIS-REx po uwolnieniu pojemnika z próbkami odleci w kierunku zewnętrznych obszarów Układu Słonecznego. Naukowcy chcieli więc wykorzystać sprawny, posiadający paliwo pojazd. Tym bardziej, że został on zaprojektowany nie do przelotu obok wybranego celu, a do zadań związanych z bliskim spotkaniem i prowadzeniem badań. W końcu zdecydowano, że pojazd poleci do 400-metrowej asteroidy Apophis. Tej samej, która w 2029 roku zbliży się do Ziemi na odległość mniejszą niż satelity na orbicie geosynchronicznej.
Przemianowana na OSIRIS-APEX misja będzie przez 18 miesięcy towarzyszyła asteroidzie. Co prawda nie pobierze żadnych próbek, ale wykona manewr polegający na podleceniu bardzo blisko i uruchomienie silników, wskutek czego być może uda się odsłonić część tego, co znajduje się pod jej powierzchnią. Naukowcy chcą się dowiedzieć, jaki będzie wpływ fizyczny przyciągania ziemskiego na asteroidę, mają też nadzieję poznać jej skład.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wszystkie duże planety Układu Słonecznego posiadają pierścienie, w kręgach naukowych pojawiaj się sugestie, że pierścienie mógł posiadać Mars. To rodzi pytanie o ewentualne pierścienie wokół Ziemi. Naukowcy z australijskiego Monash University znaleźli pierwsze dowody sugerujące, że nasza planeta również posiadała pierścień. Uczeni przyjrzeli się 21 kraterom uderzeniowym pochodzącym z trwającego ok. 40 milionów lat okresu intensywnych bombardowań Ziemi przez meteoryty, do których doszło w ordowiku.
Początek tego okresu wyznacza znaczny wzrost materiału pochodzącego z chondrytów L (chondryty oliwinowo-hiperstenowe), które znajdują się w warstwie sprzed 465,76 ± 0,30 milionów lat. Od dawna przypuszcza się, że bombardowanie to było spowodowane przez rozpad z pasie asteroid dużego obiektu zbudowanego z chondrytów L.
Uczeni z Monash zauważyli, że wszystkie badane przez nich kratery uderzeniowe znajdowały się w ordowiku w pasie wokół równika, ograniczonym do 30 stopni szerokości północnej lub południowej. Tymczasem aż 70% kraterów uderzeniowych na Ziemi powstało na wyższych szerokościach geograficznych. Zdaniem uczonych, prawdopodobieństwo, że asteroidy, po których pozostały wspomniane kratery, pochodziły z pasa asteroid, wynosi 1:25 000 000. Dlatego też zaproponowali inną hipotezę.
Andrew G. Tomkins, Erin L. Martin i Peter A. Cawood uważają, że około 466 milionów lat temu od przelatującej w pobliżu Ziemi asteroidy, w wyniku oddziaływania sił pływowych planety, oderwał się duży fragment, który rozpadł się na kawałki. Materiał ten utworzył pierścień wokół Ziemi. Stopniowo fragmenty pierścienia zaczęły opadać na planetę.
Ponadto proponujemy, że zacienienie Ziemi przez pierścień było powodem pojawienia się hirnantu, piszą autory badań. Hirnant to krótkotrwały ostatni wiek późnego ordowiku. Jego początki wiązały się z ochłodzeniem klimatu, zlodowaceniem i znacznym spadkiem poziomu oceanów.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.