Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Popiół wulkaniczny utrzymuje się długo po erupcji. Może mieć większy wpływ na klimat niż sądzono

Rekomendowane odpowiedzi

Popiół wulkaniczny może mieć większy wpływ na klimat niż dotychczas sądzono. Do takich wniosków doszli naukowcy z University of Colorado Boulder, którzy badali skutki erupcji wulkanu Mount Kelut na Jawie, który wybuchł w 2014 roku. Na podstawie obserwacji oraz symulacji komputerowych uczeni stwierdzili, że popiół może pozostawać w atmosferze przez wiele miesięcy po erupcji.

Odkrycia dokonano przypadkiem. Uczeni pilotowali drona w pobliżu Mount Kelut. Badania prowadzili po erupcji, która zmusiła tysiące ludzi do ewakuacji.

Zauważyli duże kawałki unoszące się w powietrzu miesiąc po erupcji. Wyglądało to jak popiół, mówi główna autorka najnowszych badań, Yunqian Zhu z Laboratory for Atmospheric and Space Physics na CU Boulder.

Naukowcy od dawna wiedzą, że erupcje wulkaniczne, które wyrzucają w powietrze olbrzymie ilości siarki blokującej dostęp promieni słonecznych do Ziemi, przyczyniają się do schładzania planety. Nie sądzili jednak, że i popiół odgrywa w tym procesie dużą rolę. Uważano bowiem, że jest on na tyle ciężki, iż szybko opada.

Zhu i jej zespół chcieli dowiedzieć się, dlaczego popiół był obecny w powietrzu jeszcze miesiąc po erupcji. Okazało się, że składa się on z małych lekkich fragmentów, które z łatwością unoszą się w powietrzu. Dotychczas sadzono, że popiół jest podobny do szkła wulkanicznego. Tymczasem odkryliśmy, że to, co unosiło się w powietrzu ma gęstość bardziej zbliżoną do pumeksu, stwierdza uczona.

Wydaje się też, jak mówi profesor Brian Toon, że te podobne do pumeksu cząstki zmieniają chemię całego pióropusza dymu i popiołu nad wulkanem. Wiemy, że wulkany wyrzucają duże ilości dwutlenku siarki. Wielu naukowców sądziło, że różne składniki dymu wulkanicznego wchodzą ze sobą w interakcje i w serii reakcji chemicznych powstaje kwas siarkowy. Jego formowanie się w powietrzu może trwać przez wiele tygodni. Jednak obserwacje wskazywały, że reakcje zachodzą szybciej. Nie potrafiono wyjaśnić tego fenomenu.

Toon sądzi, że znalezione cząstki popiołu mogą rzucić nieco światła na tę kwestię. Wydaje się molekuły dwutlenku siarki przyczepiają się do popiołu, który długo krąży w powietrzu. Reakcje mogą zachodzić na powierzchni cząstek popiołu, na których może się gromadzić nawet 43% siarki z erupcji. Innymi słowy, popiół może znacząco przyspieszać reakcje, w wyniku których powstaje kwas siarkowy.

Nie jest jasne, na ile ten krążący w atmosferze popiół wpływa na klimat. Teoretycznie długo utrzymujące się w powietrzu cząstki powinny schładzać powierzchnię planety. Mogą też trafiać na bieguny gdzie mogą przyczyniać się do powstawania reakcji niszczących warstwę ozonową. Tak czy inaczej, wszystko wskazuje na to, że należy lepiej przyjrzeć się temu, co dzieje się w popiołem w atmosferze po erupcji wulkanu. Myślę, że odkryliśmy coś ważnego. Takiego popiołu jest niewiele, ale może on robić sporą różnicę, mówi Toon.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Od lat wskazuję, że historyczne oziębienia trwają nawet kilka lat po dużych erupcjach wulkanów. Np. w XIV wieku potężny dwuletni głód wywołany rokiem bez lata  i deszczami był spowodowany przez potężną erupcję na Nowej Zelandii. (Głód był tak wielki że ludzie w Skandynawii zjadali się nawzajem a we Francji zginęła 1/2 populacji. Bezpośrednio po tym nastąpiła potężna epidemia). To samo działo się po wybuchu Krakatau, Tombora itp. Napoleon też miał kłopoty w Rosji przez wulkan.
Szkoda że naukowcy nie biorą pod uwagę tego co mówią racjonalnie myślący zapaleńcy (i zapaleńczynie ;) ).

  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Zauważ tylko, że tutaj nie mówią o tym, że wulkany nie chłodzą, ale że udział popiołu jest prawdopodobnie większy niż sądzono.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
12 godzin temu, Mariusz Błoński napisał:

Zauważ tylko, że tutaj nie mówią o tym, że wulkany nie chłodzą, ale że udział popiołu jest prawdopodobnie większy niż sądzono.

No o tym mówię. Zazwyczaj opracowania piszą o tym że popioły opadły w krótkim czasie. A tymczasem efekt chłodzenia i zawilgocenia występuje czasem przez parę lat. Wydaje się nawet że po największych erupcjach w dziejach przez setki lat. Były takie sugestie że znaczna część popiołów wędruje do wysokich warstw atmosfery blokując światło i wywołując efekt domina, ale naukowcy "wiedzieli lepiej" że to niemożliwe. Teraz okazuje, się że jednak możliwe.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
52 minuty temu, Ergo Sum napisał:

Były takie sugestie że znaczna część popiołów wędruje do wysokich warstw atmosfery blokując światło i wywołując efekt domina, ale naukowcy "wiedzieli lepiej" że to niemożliwe.

Jesteś pewna, że świat nauki to kwestionował ?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W 1980 roku doszło do największej erupcji wulkanicznej w historii USA i jednej z najpotężniejszych erupcji wulkanicznych XX wieku, wybuchu wulkanu Mount St. Helens. Wybuch zabił życie w promieniu wielu kilometrów. Niecałe trzy lata później naukowcy przeprowadzili wyjątkowy, trwający zaledwie jeden dzień, eksperyment nad odrodzeniem życia w regionie. Wypuścili gofferniki krecie (Thomomys talpoides), gryzonie z rodzaju gofferowatych. Dzisiaj, ponad 40 lat później, pozytywne skutki eksperymentu wciąż są widoczne.
      Gofferowate prowadzą podziemny tryb życia. Kopiąc nory napowietrzają i mieszają ziemię. Na powierzchnię ziemi wychodzą nocą, poszukując pożywienia. Rolnicy uważają je za szkodniki.
      Gdy materiał, który został wyrzucony przez wulkan, wystygł, naukowcy wysunęli hipotezę, że gryzonie, przekopując się przez ziemię, mogą doprowadzić do przemieszczenia bakterii i grzybów na powierzchnię, pomagając w ten sposób w odtworzeniu życia, wspomagają wzrost roślin i powrót zwierząt. Dwa lata po eksplozji postanowili tę hipotezę przetestować. Nie spodziewali się jednak, że wyniki eksperymentu będą widoczne do dzisiaj. W latach 80. po prostu testowaliśmy krótkoterminowy wpływ gofferowatych na pozbawiony życia krajobraz. Kto mógł przewidzieć, że wystarczy wypuścić te zwierzęta na 1 dzień, a skutki tego będą widoczne do dzisiaj, 40 lat później, mówi mikrobiolog Michael Allen z Uniwersytetu Kalifornijskiego w Riverside.
      Wtedy, w 1983 roku Allen i James McMahon z Utah State University, polecieli śmigłowcem nad obszary zniszczone przez erupcję. Zauważyli tam kilka rachitycznych roślinek, które wyrosły z nasion upuszczonych przez ptaki, ale z powodu braku składników odżywczych w glebie nie rozwijały się zbyt dobrze. Allen i McMahon wypuścili w 2 ściśle wyznaczonych miejscach kilka gofferników krecich. Po 1 dniu zwierzęta zabrano z powrotem.
      Już sześć lat później w miejscach gdzie wypuszczono zwierzęta, naukowcy naliczyli 40 000 roślin. Miejsca sąsiednie, do których zwierzęta nie dotarły, nadal były niemal pozbawione życia.
      Gryzonie, mieszając ziemię, wydobyły na powierzchnię grzyby mykoryzowe. Z wyjątkiem nielicznych gatunków korzenie nie są wystarczająco wydajne, by zapewnić roślinie potrzebne składniki odżywcze i wodę. Grzyby transportują te składniki do roślin, a w zamian otrzymują węgiel, którego potrzebują do własnego wzrostu, mówi Allen. Rola grzybów mykoryzowych jest szczególnie ważna w środowiskach ubogich w składniki odżywcze. Wystarczył jeden dzień, by gryzonie przygotowały środowisko potrzebne do wzrostu roślin.
      Drugim z ważnych aspektów badań jest pokazanie, jak ważne są grzyby dla ponownego wzrostu roślin po katastrofach naturalnych. Na jednym ze zboczy wulkanu rósł stary las iglasty. Popioły wulkaniczne pokryły drzewa, doprowadziły do przegrzania i opadnięcia igieł. Naukowcy obawiali się, że utrata igieł doprowadzi do zagłady lasu. Tak się jednak nie stało.
      Drzewa miały bowiem bogate kolonie grzybów mykoryzowych. Te bardzo szybko wykorzystały składniki odżywcze z opadniętych igieł i dostarczyły je do drzew. Drzewa odrodziły się niemal natychmiast. Nie zginęły, jak wszyscy się obawiali, mówi współautorka najnowszych badań, mikrobiolog Emma Aronson. Co więcej, jeszcze przed erupcją, po drugiej strony wulkanu, wycięto wiele hektarów lasu. Drzewa zostały stamtąd zabrane, więc nie było igieł, które zasiliłyby glebę składnikami odżywczymi. Do dzisiaj mało co tam rośnie. To naprawdę szokujące porównanie, gdy widzi się stary las, którego gleba została zasilona przez igły i martwy obszar zniszczony przez człowieka, dodaje Aronson.
      Badania pokazują, jak wielka jest odporność natury na katastrofy naturalne i jak może się ona. Nie możemy ignorować sieci współzależności w naturze. Szczególnie tych elementów, których nie widzimy, jak grzyby i mikroorganizmy, stwierdzają badacze.
      Z pracą Microbial community structure in recovering forests of Mount St. Helens można zapoznać się na łamach Frontiers in Microbiomes.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Gdy po Ziemi wędrowały dinozaury, na Księżycu wybuchały wulkany, twierdzą naukowcy z Chińskiej Akademii Nauk. Takie wnioski płyną z analizy materiału zebranego przez misję Chang'e-5. Mamy wiele dowodów wskazujących na aktywność wulkaniczną na Księżycu, nie wiadomo jednak, jak długo ona trwała. Najmłodsze datowane skały wulkaniczne mają 2 miliardy lat. Z badań przeprowadzonych przez Chińczyków wynika jednak, że dinozaury były świadkami wybuchów wulkanów na satelicie naszej planety.
      Bi-Wen Wang, Qiu-Li Li i ich koledzy opisali na łamach Science wyniki badań nad materiałem przywiezionym przez Chang'e-5. Ta wystrzelona w 2020 roku misja wylądowała w północnym regionie Oceanus Procellarum, zebrała 1,7 kilograma próbek i w grudniu przywiozła je na Ziemię. Były to pierwsze próbki przywiezione bezpośrednio z Księżyca od czasu radzieckiej misji Luna 24 z 1976 roku i jednocześnie jedyne próbki z obszaru położonego tak daleko na północy.
      Wang i jego zespół przyjrzeli się około 3000 miniaturowych (wielkości od 20 do 400 mikrometrów) fragmentów szkliwa, które znalazły się w przywiezionym materiale. Szkliwo takie może powstawać w wyniku uderzeń meteorytów oraz erupcji wulkanicznych. wykorzystali przy tym badania składu próbek oraz pomiary stosunku izotopów, by odróżnić od siebie oba rodzaje szkliwa. Zdecydowaną większość badanych fragmentów uznali za powstałe w wyniku olbrzymiej temperatury powstałej w trakcie uderzenia meteorytów. Jednak trzy fragmenty zostały uznane, na podstawie składu chemicznego i badań izotopów siarki, za pochodzące z aktywności wulkanicznej. Co więcej, ich skład chemiczny był bardzo podobny do składu szkła wulkanicznego zebranego przez astronautów misji Apollo.
      Jednak najważniejsze było określenie tych trzech fragmentów. Datowanie metodą uranowo-ołowiową wykazało, że maja one 123 miliony lat (±15 milionów). Dodatkowo wysoka zawartość toru i pierwiastków ziem rzadkich dodatkowo potwierdza tak niedawny wulkanizm na Księżycu.
      Wyniki badań są zaskakujące. Jeśli chińscy uczeni mają rację, oznacza to, że Księżyc był aktywny wulkanicznie niemal przez całą swoją historię. Inne dowody wskazują bowiem na wulkanizm sprzed 4,4 miliarda lat temu. Przez długi czas uważano, że procesy wulkaniczne zatrzymały się co najmniej miliard lat temu. Pojawiają się jednak sugestie, że być może procesy takie trwały jeszcze około 100 milionów lat temu.
      Teraz Chińczycy jako pierwsi donoszą o wynikach badań laboratoryjnych wskazujących, że Księżyc był aktywny jeszcze całkiem niedawno. To zaś rodzi pytanie, czy głęboko pod jego powierzchnią istnieją pierwiastki radioaktywne zdolne do wytworzenia tak dużo energii, by istniały tam komory magmowe.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zdaniem naukowców z University of Cambridge, wpływ wulkanów na klimat jest mocno niedoszacowany. Na przykład w najnowszym raporcie IPCC założono, że aktywność wulkaniczna w latach 2015–2100 będzie taka sama, jak w latach 1850–2014. Przewidywania dotyczące wpływu wulkanów na klimat opierają się głównie na badaniach rdzeni lodowych, ale niewielkie erupcje są zbyt małe, by pozostawiły ślad w rdzeniach lodowych, mówi doktorantka May Chim. Duże erupcje, których wpływ na klimat możemy śledzić właśnie w rdzeniach, mają miejsce najwyżej kilka razy w ciągu stulecia. Tymczasem do małych erupcji dochodzi bez przerwy, więc przewidywanie ich wpływu na podstawie rdzeni lodowych prowadzi do mocnego niedoszacowania.
      Z badań przeprowadzonych przez Chim i jej zespół wynika, że modele klimatyczne nawet 4-krotnie niedoszacowują chłodzącego wpływu małych erupcji wulkanicznych. Podczas erupcji wulkany wyrzucają do atmosfery związki siarki, które gdy dostaną się do górnych jej partii, tworzą aerozole odbijające światło słoneczne z powrotem w przestrzeń kosmiczną. Gdy mamy do czynienia z tak dużą erupcją jak wybuch Mount Pinatubo w 1991 roku, emisja związków siarki jest tak duża, że spadają średnie temperatury na całym świecie. Takie erupcje zdarzają się rzadko. W porównaniu z gazami cieplarnianymi emitowanymi przez ludzi, wpływ wulkanów na klimat jest niewielki, jednak ważne jest, byśmy dokładnie uwzględnili je w modelach klimatycznych, by móc przewidzieć zmiany temperatur w przyszłości, mówi Chim.
      Chim wraz z naukowcami z University of Exeter, Niemieckiej Agencji Kosmicznej, UK Met Office i innych instytucji opracowali 1000 różnych scenariuszy przyszłej aktywności wulkanicznej, a następnie sprawdzali, co przy każdym z nich będzie działo się z klimatem. Z analiz wynika, że wpływ wulkanów na temperatury, poziom oceanów i zasięg lodu pływającego jest prawdopodobnie niedoszacowany, gdyż nie bierze pod uwagę najbardziej prawdopodobnych poziomów aktywności wulkanicznej.
      Analiza średniego scenariusza wykazała, że wpływ wulkanów na wymuszenie radiacyjne, czyli zmianę bilansu promieniowania w atmosferze związana z zaburzeniem w systemie klimatycznym, jest niedoszacowana nawet o 50%. Zauważyliśmy, że małe erupcje są odpowiedzialny za połowę wymuszenia radiacyjnego generowanego przez wulkany. Indywidualne erupcje tego typu mogą mieć niemal niezauważalny wpływ, ale ich wpływ łączny jest duży, dodaje Chim.
      Oczywiście erupcje wulkaniczne nie uchronią nas przed ociepleniem. Aerozole wulkaniczne pozostają w górnych warstwach atomsfery przez rok czy dwa, natomiast dwutlenek węgla krąży w atmosferze znacznie dłużej. Nawet jeśli miałby miejsce okres wyjątkowo dużej aktywności wulkanicznej, nie powstrzyma to globalnego ocieplenia. To jak przepływająca chmura w gorący słoneczny dzień, jej wpływ chłodzący jest przejściowy, wyjaśnia uczona.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ubiegłoroczna erupcja wulkanu Hunga Tonga była rekordowa pod wieloma względami. Była najpotężniejszą erupcją wulkaniczną obserwowaną bezpośrednio przez naukowców, w jej wyniku do atmosfery trafiło wyjątkowo dużo wody i doszło do początkowego wypiętrzenia oceanu na wysokość 90 metrów. Właśnie dowiedzieliśmy się o kolejnym rekordzie. Okazuje się bowiem, że erupcja wywołała najbardziej intensywne wyładowania atmosferyczne.

      Pomimo tego, że kaldera znajdowała się na głębokości 150 metrów, wulkan wyrzucił gazy i pyły na wysokość 58 kilometrów. W tym pióropuszu doszło do gwałtownych wyładowań elektrycznych. Już doniesienia z pierwszych dni po erupcji mówiły o setkach tysięcy wyładowań. Teraz na łamach Geophysical Review Letters ukazał się artykuł obrazujący, jak bardzo intensywne były to wyładowania.
      Naukowcy mogli je przeanalizować dzięki sieci naziemnych anten obserwujących wyładowania atmosferyczne oraz satelitom GOES-17 i Himawari-8. Okazało się, że w szczytowym momencie, o godzinie 4:53 czasu miejscowego doszło do 2615 wyładowań w ciągu minuty. Nigdy wcześniej nie obserwowano tak intenstywnych wyładowań. Dotychczasowy rekord wynosił 993 tego typu wydarzenia w ciągu minuty. To jednak nie jedyny rekord. Błyskawice obserwowano na wysokościach od 20 do 30 kilometrów. "Nigdy wcześniej nie widzieliśmy wyładowań tak intensywnych i mających miejsce na tak dużej wysokości", mówi jedna z autorek badań,
      Alexa Van Eaton z US Geological Survey. Z obrazów satelitarnych wynika, że wyładowania nie były rozłożone przypadkowo w chmurze pyłu i gazu, ale skupiały się w licznych koncentrycznych pierścieniach.
      Erupcja Hunga Tonga była dla naukowców niezwykłą okazją do lepszego poznania wulkanizmu. Tak wielkie erupcje freatomagmowe – eksplozywne interakcje pomiędzy wodą a magmą – obserwowano dotychczas jedynie w zapisach geologicznych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Obserwujący niebo średniowieczni mnisi wnieśli udział do współczesnej wulkanologii. Międzynarodowy zespół badawczy, pracujący pod kierunkiem uczonych z Uniwersytetu w Genewie, przeanalizował średniowieczne kroniki, rdzenie lodowe i pierścienie drzew, co pozwoliło na precyzyjne datowanie jednych z największych erupcji wulkanicznych w historii ludzkości. W ten sposób uzyskali nowe informacje dotyczące jednego z najbardziej aktywnych wulkanicznie okresów na Ziemi.
      Naukowcy ze Szwajcarii, Francji, USA, Kanady, Wielkiej Brytanii i Irlandii przez pięć lat analizowali setki kronik i annałów pochodzących z Europy i Bliskiego Wschodu. Wielkie erupcje wulkaniczne wyrzucają do atmosfery duże ilości związków siarki, które zaburzają budżet energetyczny Ziemi, powodując sezonowe i regionalne zmiany temperatury oraz opadów. Zmiany takie, w połączeniu z czynnikami społecznymi wiążą się z historycznymi deficytami w produkcji wolnej, niepokojami społecznymi i politycznymi, epidemiami i migracjami.
      Podstawowym narzędziem datowania wybuchów wulkanów są dowody geologiczne. Dzięki nim wiemy, że w XII-XIII wieku doszło do wzmożonego wulkanizmu zapoczątkowanego przez szereg erupcji z lat ok. 1108–1110, a w 1257 roku miał miejsce wybuch wulkanu Salamas, jedno z największych tego typu wydarzeń epoki holocenu. Jednak geologiczne datowanie erupcji nie jest łatwe i niesie ze sobą wiele wyzwań.
      Naukowcy z Genewy i ich koledzy postanowili skorzystać z faktu, że wielkie erupcje mogą prowadzić do widocznych zmian w atmosferze. Rozpoczęli więc poszukiwanie w kronikach opisów takich zmian.
      Obecność aerozoli w atmosferze ma bardzo duży wpływ na jasność Księżyca podczas zaćmienia. Im więcej aerozoli, tym ciemniejszy wydaje się wówczas Księżyc. Naukowcy przejrzeli imponującą liczbę źródeł, poszukując tych, których kontekst historyczny był znany, a w których opisano całkowite zaćmienia Księżyca wraz z informacjami o kolorze ziemskiego satelity.
      W Europie głównymi źródłami na temat takich wydarzeń są annały i kroniki tworzone w klasztorach i miastach. W źródłach arabskich informacje znajdziemy najczęściej w kronikach uniwersalnych, w Chinach i Korei ich odnotowywaniem zajmowali się oficjalni astronomowie, a w Japonii obserwacje zaćmień rejestrowano w licznych źródłach, jak dzienniki dworzan, kroniki czy zapiski świątynne.
      Z badań astronomicznych wiemy, że pomiędzy 1100 a 1300 rokiem – o ile pogoda pozwoliła – ludzie w Europie mogli obserwować 64 całkowite zaćmienia Księżyca, mieszkańcy Bliskiego Wschodu mogli widzieć ich 59, a mieszkańcy Azji Wschodniej – 64. Badacze znaleźli 180 europejskich źródeł z opisami 51 z tych zaćmień, 10 bliskowschodnich z opisami 7 zaćmień, oraz 199 wschodnioazjatyckich, w których opisano 61 zaćmień. Liczba doniesień na temat zaćmień jest bardzo różna. Na przykład na terenie Europy 12 zaćmień opisano tylko w jednym źródle, ale np. zaćmienie z 11 lutego 1161 roku zostało opisane w aż 16 zachowanych do dzisiaj źródłach.
      Chrześcijańskie źródła europejskie przynoszą informacje o kolorze i jasności Księżyca podczas 36 zaćmień. Danych takich brakuje w źródłach azjatyckich, z których tylko jedno opisuje kolor. Kronikarze chrześcijańscy interesowali się kolorem ziemskiego satelity prawdopodobnie pod wpływem Apokalipsy św. Jana, gdzie znajdziemy wzmiankę o księżycu w kolorze krwi (Ap 6:12). Biblia miała więc wpływ na obserwacje zjawisk naturalnych, co jednak nie znaczy, że ówczesna europejska nauka nie znała ich fizycznych przyczyn. Wręcz przeciwnie, ze średniowiecznych traktatów astronomicznych wiemy, że wiedza babilońskich czy greckich astronomów była w Europie dostępna. Jednocześnie zatem istniała interpretacja naturalna i nadprzyrodzona zaćmień.
      Po przeprowadzeniu analizy naukowcy stwierdzili, że wśród 64 całkowitych zaćmień opisanych przez europejskich kronikarzy, w przypadku 37 z nich mamy informacje o jasności i kolorze. Uczeni uszeregowali je na skali Danjona, wedle której wartość L=0 oznacza bardzo ciemne zaćmienie, gdy Księżyc jest niemal niewidoczny, a L=4 to bardzo jasne zaćmienie, z Księżycem w kolorze miedzianoczerwonym lub pomarańczowym. Tylko sześć wydarzeń zostało zakwalifikowanych jako L=0. Były to zaćmienia z nocy z 5/6 maja 1110, 12/13 stycznia 1172, 2/3 grudnia 1229, 18/19 maja 1258, 12/13 listopada 1258 oraz 22/23 listopada 1276. Wyjątkowe świadectwo znaleziono też w źródle japońskim. Mimo że azjatyckie źródła rzadko wspominają o kolorze, to jednak autor Meigetsuki, Fujiwara no Teika, odnotował wyjątkowo ciemny Księżyc podczas zaćmienia 2 grudnia 1229 roku. Wspomina, że Księżyc całkowicie zniknął na długi czas, nikt z żyjących nie pamiętał takiego wydarzenia, a astronomowie mówili o nim z obawą.
      Wszystkie wspomniane zaćmienia L=0 są zbieżne z 5 z 7 największych erupcji wulkanicznych, o których wiemy z rdzeni lodowych. Mowa tutaj o erupcjach UE1 (rok 1108 według danych geologicznych), UE2 (1171), UE4 (1230), Salamas (1257) oraz UE5 (1276). To bardzo silna wskazówka, że za taki a nie inny kolor i jasność ziemskiego satelity odpowiadało zanieczyszczenie atmosfery przez wulkany.
      Dzięki połączeniu danych z rdzeni lodowych, pierścieni drzew, obserwacji całkowitych zaćmień Księżyca oraz modelowania transportu aerozoli w atmosferze, naukowcy stwierdzili, że do wielkiej erupcji wulkanicznej dochodziło na 3 do 20 miesięcy przed obserwacjami całkowitego zaćmienia L=0. I tak na przykład można stwierdzić, że data erupcji UE2, która według datowania geologicznego nastąpiła prawdopodobnie w 1171 roku, została uściślona – dzięki średniowiecznym kronikom i badaniom pierścieni drzew – na maj/sierpień 1171. Podobnie uściślono inne daty. UE1 miała miejsce zimą na przełomie lat 1108/1109, UE4 nastąpiła wiosną/latem 1229, a erupcja Salamas to wiosna lub lato 1257 roku, co pozwala odrzucić proponowaną alternatywną datę 1256. W przypadku UE5 datę udało się ustalić jedynie na okres między wrześniem 1275 a lipcem 1276, a dalsze uściślenie było niemożliwe, gdyż w pierścieniach drzew brak oczywistego sygnału ochłodzenia.
      Wielkie erupcje wulkaniczne prowadziły do przejściowego ochłodzenia, które mogło trwać dłużej niż rok. Takie wydarzenia odbijały się niekorzystnie na zbiorach, powodując niedobory żywności czy klęski głodu. Jednak ludzie nie łączyli wulkanów ze słabymi zbiorami. W starych dokumentach rzadko wspomina się erupcje wulkaniczne. A były to wydarzenia o olbrzymim znaczeniu. Erupcja Salamas była równie potężna, co słynny wybuch wulkanu Tambora z 1815 roku. Rok 1816 okrzyknięto rokiem bez lata. Nic dziwnego, gdyż średnie globalne temperatury na półkuli północnej spadły wówczas o 0,53 stopnia Celsjusza i szacuje się, że spowodowało to śmierć około 90 000 ludzi. Salamas wybuchł 550 lat wcześniej, gdy ludzkość była znacznie bardziej wrażliwa na takie wydarzenia, a z obecnie dostępnych danych wynika, że anomalia temperaturowa po jego erupcji wyniosła nie -0,5, ale -2 stopnie Celsjusza.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...