Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Satelita NASA spłonął w atmosferze. OGO-1 został wystrzelony 56 lat temu
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Któż by się spodziewał, że kanapka z wołowiną może stać się przedmiotem dyskusji podczas uchwalania budżetu NASA przez Izbę Reprezentantów, a w jej sprawie będzie wypowiadał się sam szef NASA, James Webb (tak, tak, ten od Teleskopu Webba)? A jednak...
Misja Gemini III (23 marca 1965) była pierwszą załogową misją w ramach projektu Gemini i 7. amerykańską misją załogową w historii. Udział w niej wzięli Virgil „Gus” Grissom i John Young. Trwała niecałe 5 godzin, ale w jej ramach NASA chciała przetestować m.in. system wyżywienia astronautów dla planowanych dłuższych misji. Astronauci mieli sprawdzić szczelność plastikowych torebek z liofilizowaną żywnością, system dostarczania wody do torebek, system pozbywania się śmieci.
Już podczas treningu na Ziemi Grissom narzekał na okropny smak kosmicznego jedzenia. Sam Young określał niektóre dania jako „ledwie możliwe do przełknięcia”, a jeszcze inny astronauta opisywał posiłki serwowane załogom misji Gemini jako „dziwaczne”. Jedzenie było tak okropne, że podczas naziemnego treningu, który odbywał się m.in. w panamskiej dżungli, przez dwa pierwsze dni astronauci woleli w ogóle nie jeść. Trzeciego dnia pokonał ich głód. Sytuację pogarszał fakt, że liofilizowaną masę musieli najpierw nawodnić zimną wodą. Z ciepłą dałoby się to jeszcze jakoś przełknąć. Ale na pokładzie była tylko zimna.
Young postanowił zrobić przyjemność bardziej doświadczonemu koledze. Przed startem poprosił innego astronautę, Waltera Schirrę, o kupno w pobliskim barze kanapki z marynowaną wołowiną. Gdy Grissom i Young szli w kierunku stanowiska startowego, Schirra podał Youngowi kanapkę, a ten schował ją do kieszeni skafandra.
Dwie godziny po starcie Young miał za zadanie rozpocząć eksperyment z żywnością. Wyjął więc kanapkę z kieszeni i zaproponował ją swojemu dowódcy. To, co działo się w kabinie, zarejestrowały systemy komunikacji z Ziemią. Young zapytał Grissoma, czy chce. Grissom zapytał, co to i skąd to jest, na co Young odpowiedział, że zabrał ze sobą. Jednak gdy Grissom ugryzł kanapkę poczuł w ustach okruszki. Schował więc kanapkę do kieszeni, by okruszki nie zaczęły unosić się w kabinie.
Dwa dni później, podczas konferencji prasowej, na której zgromadzili się dziennikarze z całego świata, padło pytanie o kanapkę. Young wydawał się zaskoczony. Najpierw zapytał, skąd dziennikarz o tym wie, a potem wybuchnął śmiechem i stwierdził, że Grissom ją zjadł.
Astronauta z pewnością nie spodziewał się, że jego kanapką zajmie się niezwykle poważne grono. Dnia 5 kwietnia 1965 roku podkomitecie Izby Reprezentantów, który był częścią komitetu decydującego o wydatkowaniu pieniędzy budżetowych, trwała m.in. dyskusja na temat kolejnego budżetu NASA.
Dyskusja zeszła na program Gemini. W pewnym momencie deputowany George E. Shipley zapytał dyrektora NASA, Jamesa Webba, dlaczego Agencja zmniejsza finansowanie programu. Odpowiedzi udzielił wicedyrektor ds. misji załogowych, George Mueller, który wyjaśnił, że w związku z zakończeniem testów naziemnych spadły też koszty misji.
W pewnym momencie Shipley stwierdził: To bardzo udany program. Proszę mi powiedzieć o ostatniej misji oraz o kanapce, która znalazła się na pokładzie. Czy Pan to zatwierdził? [...] Myślę, że po wydaniu takich pieniędzy i przeznaczeniu takiej ilości czasu, wniesienie na pokład pojazdu kanapki jest czymś niewłaściwym. [...] Czytałem artykuł, z którego wynikało, że okruszki z kanapki latały po całej kabinie. Wiem, ze wszystko sterylizujecie i dokładnie czyścicie, że pojazd jest niemal jak sala operacyjna, a tutaj ktoś wnosi kanapkę. Co Pan o tym myśli?.
Pomiędzy Shipleyem a urzędnikami NASA wywiązała się utarczka słowna, którą przerwał jeden z deputowanych pytaniem, czy kanapka zagroziła powodzeniu misji. Przedstawiciele NASA zapewnili, że nie. W końcu włączył się w to dyrektor Webb, który przyznał Shipleyowi rację, że takie rzeczy nie powinny mieć miejsca. Dodał, że program kosmiczny jest zbyt ważny, by można było pozwolić astronautom na samodzielne decydowanie, co mogą ze sobą zabrać.
Webb miał rację, gdyż narażenie na niebezpieczeństwo dopiero rozwijającego się programu załogowych misji kosmicznych mogłoby stanowić poważne utrudnienie w realizacji tak ważnego celu, jakim było lądowanie człowieka na Księżycu. Szczególnie w obliczu ostrej rywalizacji ze Związkiem Radzieckim.
Od czasu misji Gemini IV NASA wdrożyła ściślejsze reguły, zgodnie z którymi każdy astronauta ma obowiązek przedstawić do akceptacji listę przedmiotów, jakie chce ze sobą zabrać. Zabronione są kanapki czy ciężkie przedmioty z metalu.
Pomimo krytycznej uwagi dyrektora Webba, Young nie dostał nawet nagany za swoje zachowanie. A kanapka nie przeszkodziła mu w jego rozwijającej się i – jak się z czasem okazało – wyjątkowej karierze. Był pierwszym astronautą w historii, który poleciał w kosmos sześciokrotnie (2xGemini, 2xApollo, 2xSTS), pierwszym dowódcą promu kosmicznego i przez 13 lat był dyrektorem Astronaut Office, które zarządza astronautami, a szef biura osobiście decyduje, kto zostanie dowódcą, pilotem czy specjalistą danej misji. Ciekawe, czy w tej roli uczulał swoich młodszych kolegów, by nie brali ze sobą kanapek.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Niemieccy badacze znaleźli nowe źródło informacji o stężeniu dwutlenku węgla w atmosferze przed milionami lat. Okazało się, że zapis na ten temat znajduje się w... skamieniałych zębach dinozaurów. Uczeni z Uniwersytetów w Moguncji, Göttingen i Bochum, na podstawie analizy izotopów tlenu w szkliwie zębów dinozaurów stwierdzili, że stężenie CO2 w atmosferze w mezozoiku (252–66 milionów lat temu), było znacznie wyższe niż obecnie. Badania były możliwe dzięki wykorzystaniu innowacyjnej metody, która pozwoliła na określenie względnego stosunku wszystkich trzech naturalnych izotopów tlenu.
Badania wykazały, że produkcja pierwotna – czyli w tym przypadku szybkość gromadzenia energii promieniowania słonecznego, która jest podczas fotosyntezy przekształcana w energię wiązań chemicznych w tkankach roślinnych – była dwukrotnie większa niż obecnie.
Naukowcy przeanalizowali zęby dinozaurów z Ameryki Północnej, Afryki i Europy pochodzące o czasów od późnej jury po późną kredę. Szkliwo zębowe to jeden z najbardziej stabilnych materiałów biologicznych. Zawiera ono trzy izotopy tlenu, które do organizmu dinozaurów dostawały się w czasie oddychania. Względny stosunek tych izotopów w powietrzu zależy od zmian w poziomie atmosferycznego dwutlenku węgla i intensywności fotosyntezy. To oznacza, że zęby dinozaurów mogą zawierać dane o klimacie i szacie roślinnej.
Z badań wynika, że pod koniec jury, około 150 milionów lat temu, stężenie CO2 w atmosferze było czterokrotnie większe niż w epoce przedprzemysłowej. W późnej kredzie – 73–66 milionów lat temu – było zaś 3-krotnie wyższe. W czasach przedprzemysłowych stężenie CO2 w atmosferze wynosiło 280 ppm. Obecnie jest ono o ponad 50% wyższe. W 2024 było to 424 ppm. Wartość ta szybko rośnie. Jeszcze w 2017 roku stężenie wynosiło 406 ppm.
Analizy wykazały też, że w niezwykły stosunek izotopów tlenu w niektórych zębach gatunków Tyrannosaurus rex i Kaatedocus siberi. To najprawdopodobniej dowód na nagłe wzrosty stężenia CO2, spowodowane na przykład potężną aktywnością wulkaniczną, jak ta, która utworzyła trapy Dekanu.
Uzyskane wyniki to przełom w paleoklimatologii. Dotychczas bowiem w czasie podobnych badań używa się próbek węglanów z gleby i wykorzystuje proxy morskie, czyli niebezpośrednich wskaźników ze środowiska morskiego. Obie te metody obarczone są jednak pewnym marginesem niepewności. Użycie szkliwa zębów dinozaurów to pierwsza metoda badań tego typu opierająca się na kręgowcach lądowych. To całkowicie nowy sposób wglądu w przeszłość Ziemi. Teraz możemy użyć sfosylizowanego szkliwa do badania składu atmosfery oraz produktywności roślin morskich i lądowych. To kluczowe elementy zrozumienia długoterminowej dynamiki klimatu, mówi doktor Dingsu Feng z Wydziału Geochemii i Geologii Izotopowej na Uniwersytecie w Göttingen.
Informacje o produkcji pierwotnej to ważne dane na temat lądowych i morskich sieci troficznych. Dane takie trudno jest zdobyć, a są one bardzo ważne, gdyż to dostępna biomasa roślinna decyduje o liczbie zwierząt, ich gatunków oraz długości łańcucha pokarmowego, wyjaśnia profesor Eva M. Griebeler z Uniwersytetu w Moguncji.
Badania zostały omówione na łamach PNAS.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Pełniący obowiązki administratora NASA Sean Duffy, wydał dyrektywę, której celem jest przyspieszenia budowy reaktora atomowego na powierzchni Księżyca. Agencja niejednokrotnie prowadziła prace nad reaktorami służącymi eksploracji kosmosu. Dotychczas żaden nie przyniósł oczekiwanych rezultatów. Administracja prezydenta Trumpa – w obliczu rosnącej konkurencji ze strony Chin i Rosji – chce wreszcie doprowadzić tę kwestię do końca.
Chiny i Rosja mają ambitne plany. Chcą do połowy lat 30. wybudować w pobliżu bieguna południowego Księżyca stację zasilaną energią jądrową. Biegun południowy znajduje się też w kręgu zainteresowań USA, które chcą w 2027 roku wysłać tam misję załogową. W tamtym regionie znajdują się wiecznie zacienione kratery, zawierające zamarzniętą wodę, którą można wykorzystać zarówno do picia, jak i do produkcji paliwa.
Prezydent Trump już w czasie swojej pierwszej kadencji naciskał na zorganizowanie załogowej misji na Księżyc. W 2022 roku NASA, zainspirowana częściowo polityką byłego już wówczas prezydenta, prowadziła projekt, w ramach którego trzy firmy otrzymały po 5 milionów dolarów na opracowanie koncepcji niewielkiego, 40-kilowatowego reaktora atomowego o masie nie przekraczającej 6 ton.
Projekt Duffy'ego jest bardziej ambitny. Reaktor ma mieć moc co najmniej 100 kW i być gotowy do wystrzelenia w 2029 roku. Teraz NASA ma 30 dni na wyznaczenie urzędnika, który będzie nadzorował cały projekt i 60 dni na opublikowanie oferty dla partnerów.
Powstanie takiego reaktora na Księżycu może pozwolić też USA de facto na przecięcie niewielkiej części Srebrnego Globu. Traktat o przestrzeni kosmicznej zabrania co prawda jakiemukolwiek państwu zawłaszczania jakiegokolwiek fragmentu przestrzeni kosmicznej czy ogłaszania swojego zwierzchnictwa nad nim, jednak ten sam traktat mówi, o konieczności poszanowania uzasadnionych interesów innych państw. To zaś może oznaczać, że w pewnej odległości od takiego reaktora inne państwa nie będą mogły prowadzić żadnej działalności mogącej utrudnić jego działanie. De facto mogłaby powstać w jego pobliżu wyłączna strefa zarządzana przez USA.
Wielu ekspertów wątpi, czy rok 2029 jest realistycznym terminem wysłania na Księżyc reaktora atomowego. Tym bardziej, że – ich zdaniem – zorganizowanie misji załogowej w 2027 roku też jest zbyt ambitnym celem.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Czy można naprawić urządzenie, które znajduje się w odległości ponad 600 milionów kilometrów i uległo mechanicznemu uszkodzeniu? Jak się okazuje, można. Dokonali tego naukowcy odpowiedzialni za misję Juno krążącą na orbicie Jowisza. Naukowcy z Southwest Research Institute właśnie podzielili się szczegółami niezwykłego przedsięwzięcia, jakiego podjęli się w grudniu 2023 roku.
JunoCam to kamera działająca w kolorze i w zakresie światła widzialnego, której głównym celem jest robienie zdjęć przeznaczonych dla opinii publicznej. W ten sposób NASA chce zwiększyć zainteresowanie przeciętnego zjadacza chleba misjami w kosmosie. Dostarczone przez nią obrazy przyczyniły się też do dokonania ważnych odkryć. Jednostka optyczna JunoCam znajduje się poza wzmocnioną tytanem osłoną przed promieniowaniem, która chroni instrumenty naukowe Juno przed szkodliwym promieniowaniem kosmicznym.
Twórcy misji byli przekonani, że JunoCam przetrwa osiem orbit wokół Jowisza, nie wiedzieli jednak, jak będzie sprawowała się dalej. Okazało się, ze przez pierwsze 34 orbity kamera pracowała niemal idealnie. Podczas 47. orbity na zdjęciach zaczęły pojawiać się błędy. Inżynierowie wiedzieli, że prawdopodobną przyczyną uszkodzenia jest promieniowanie, jednak który element uległ uszkodzeniu? Zaczęto szukać odpowiedzi i okazało się, że doszło do uszkodzenia regulatora napięcia. Opcji naprawy zepsutego urządzenia, znajdującego się ponad 600 milionów kilometrów od Ziemi nie było zbyt wiele. Eksperci zdecydowali się na wyżarzanie. To technika obróbki metali, podczas której materiał jest podgrzewany, utrzymywany w wysokiej temperaturze, a następnie powoli studzony. Mimo, że proces ten nie jest do końca przez naukę rozumiany, może on prowadzić do zmniejszenia liczby defektów w materiale.
Wiedzieliśmy, że wyżarzanie może czasem zmienić strukturę takiego materiału jak krzem na poziomie mikroskopowym. Nie wiedzieliśmy, czy to coś pomoże. Nakazaliśmy więc jednemu z podgrzewaczy JunoCam podniesienie temperatury do 25 stopni Celsjusza – to dużo cieplej niż typowa temperatura pracy kamery – i czekaliśmy wstrzymując oddech, mówi Jacob Schaffner z Malin Space Science Systems, który zaprojektował kamerę.
Wkrótce po wyżarzaniu kamera zaczęła dostarczać obrazów dobrej jakości, jednak pojazd coraz bardziej zbliżał się do planety, był narażony na coraz silniejsze promieniowanie. I do 55. orbity błędy były już na wszystkich zdjęciach. Eksperci próbowali różnych metod obróbki obrazu, ale nic nie pomagało. Zostało kilka tygodni do przelotu w pobliżu księżyca Jowisza, Io. Postanowiliśmy postawić wszystko na jedną kartę, maksymalnie rozgrzać podgrzewacz JunoCam i przekonać się, czy więcej wyżarzania coś da, stwierdził Michael Ravine.
Obrazy przesłane w pierwszym tygodniu wyżarzania były nieco lepsze. Później zaś doszło do dramatycznej poprawy jakości obrazu. Do dnia 30 grudnia 2023 roku, kiedy Juno przeleciała zaledwie 1500 kilometrów od powierzchni Io, JunoCam pracowała niemal tak dobrze, jak w dniu wystrzelenia misji.
Do dzisiaj satelita Juno okrążył Jowisza 74 razy. Podczas ostatniej, 74. orbity, znowu pojawiły się błędy na zdjęciach. Inżynierowie mają nadzieję, że kolejne wyżarzanie ponownie poprawi jakość fotografii.
Od czasu pierwszych eksperymentów z naprawą JunoCam zespół odpowiedzialny za misję zastosował różne wersje wyżarzania w różnych instrumentach naukowych i podsystemach inżynieryjnych. Uzyskano świetne wyniki. Juno uczy nas, jak zbudować i utrzymywać pojazd kosmiczny zdolny do tolerowania promieniowania. To ważna lekcja nie tylko dla misji Juno, ale też dla satelitów krążących wokół Ziemi. Sądzę, że zdobyte doświadczenia zostaną zastosowane w przypadku satelitów wojskowych i komercyjnych oraz w innych misjach NASA, główny naukowiec misji Juno z Southwest Research Institute, Scott Bolton.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na University of Queensland (UQ) prowadzone są eksperymenty nad wykorzystaniem pól magnetycznych do ochrony wchodzących w atmosferę pojazdów kosmicznych przed nadmierną temperaturą i przeciążeniami. Kluczowym elementem eksperymentów będzie zbadanie deformacji pól magnetycznych w kontakcie z gorącą plazmą. Ich celem jest zaś opracowanie technologii, która pozwoli na budowę bardziej bezpiecznych, lżejszych ich tańszych pojazdów kosmicznych.
Pojazdy kosmiczne wchodzące w atmosferę Ziemi pędzą z prędkością około 30 tys. km/h. Powietrze wokół nich staje się tak gorące, że zamienia się plazmę. Przed spłonięciem pojazdy chronione są za pomocą osłon termicznych. Celem profesora Gildfinda z UQ jest odepchnięcie tej plazmy od pojazdu za pomocą pól magnetycznych generowanych przez nadprzewodzące magnesy. To powinno znacząco zmniejszyć temperatury, jakich doświadcza pojazd wchodzący w atmosferę czy to Ziemi czy Marsa. Tym samym powrót taki będzie bezpieczniejszy, osłony termicznie nie będą musiały być tak potężne jak obecnie, pojazd stanie się więc lżejszy i tańszy. Podobnie jak cała misja związana z jego wystrzeleniem.
Dodatkową korzyścią z wykorzystania pól magnetycznych jest fakt, że gdy wywierają one nacisk na plazmę, plazma odpowiada tym samym. Pojawia się siła, która dodatkowo spowalnia opadający na planetę pojazd. W ten sposób mamy dodatkowy element hamujący. Pojawia się on wcześniej i spowolni pojazd jeszcze zanim otaczająca go kula ognia osiągnie maksymalną intensywność, a przeciążenia staną się trudne do zniesienia. A obniżenie temperatury powierzchni pojazdu oznacza, że osłony termiczne mogą być lżejsze, bez narażania na szwank bezpieczeństwa, wyjaśnia uczony.
Gildfind i jego zespół prowadzą eksperymenty w Centre for Hypersonics University of Queensland, jednym z najważniejszych środków badań nad prędkościami hipersonicznymi, definiowanymi jako prędkości co najmniej 5-krotnie większe od prędkości dźwięku. Dotychczas prowadzono niewiele badań nad deformacją pól magnetycznych przez plazmę utworzoną wokół szybko poruszającego się obiektu. Natomiast zupełnie nic nie wiadomo na temat tego, jak taka technologia sprawdziłaby się w przypadku obiektu wielkości pojazdu kosmicznego. Modele i analizy pokazują, że powinien być to znaczny efekt, ale dopóki tego nie przetestujemy, nie będziemy pewni, stwierdza uczony.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.