Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Owadzi symulator lotu

Recommended Posts

Grupa naukowców z Los Alamos, ośrodka znanego głównie z eksperymentów nad bronią atomową, wraz z kolegami z innych uczelni opracowała nową metodę obserwacji świata oczami muchy. Dzięki swoim odkryciom poszerszyli oni znacznie wiedzę o mechanizmie, w jakim zwierzęta postrzegają świat oraz o ich reakcjach na zmiany w środowisku. Badenia te pozwolą też być może znacząco zmienić sposób konstruowania przez informatyków tzw. sieci neuronowych, co może znacząco wspomóc prace nad rozwojem sztucznej inteligencji.

Aby zbadać zachowania much, badacze unieruchomili je na specjalnej platformie i podłączyli miniaturowe elektrody do neuronów odpowiadających za postrzeganie przez nie ruchu w otoczeniu. Dodatkowo umieścili urządzenie w środowiku przypominającym naturalne miejsce bytowania much, czyli w zalesionej okolicy. Następnie wprawili platformę w ruch naśladujący lot muchy unikającej drapieżnika lub goniącej innego owada. W ten sposób wymuszono na muchach obserwowanie przestrzeni w czasie ruchu podobnego do tego wykonywanego w stanie zagrożenia, a jednocześnie rozwiązno problem związany z instalacją okablowania na ciele owada.

Co ciekawe, podobne (choć oczywiście znacznie bardziej prymitywne) badania prowadzono już w... 1926 roku. Wtedy jednak niemożliwe było osiągnięcie tak wysokiej precyzji jak obecnie. Brakowało wystarczająco dokładnej aparatury pomiarowej, a dodatkowo urządzenia odtwarzające ruchy owada nie były wystarczająco dynamiczne.

Z łatwością można się domyślić, że podczas dynamicznego "lotu" reakcje neuronów były bardzo szybkie. Stwierdzono również, że przekazywane przez nie informacje mają charakter sygnału cyfrowego, tzn. składały się z serii bardzo szybkich impulsów oraz przerw między nimi, co odpowiada zerom i jedynkom w komputerowym kodzie binarnym.

W badanym przez nas systemie neurony odpowiadające za wykrywanie ruchu wysyłały bardzo krótkie i precyzyjne serie danych - tłumaczy fizyk Ilya Nemenman, jeden z autorów badań. Dodaje: Do tej pory zwykliśmy uważać, że wysyłane dane mają charakter znacznie bardziej przypadkowy. Tymczasem, ku naszemu zaskoczeniu, okazało się, że precyzja wysyłanych serii informacji jest co najmniej dziesięciokrotnie wyższa od opisywanej dotychczas.

Obserwacja much dostarczyła także interesujących danych na temat oszczędzania energii przez muchy. W czasie lotu z gwałtownymi manewrami aż 10% energii wytwarzanej w jej ciele jest zużywane przez oczy. Z tego powodu, w celu optymalizacji zużycia energii, w czasie spoczynku oko owada pracuje w trybie "uśpionym", a aktywność neuronów odpowiedzialnych za widzenie znacznie spada. W tym czasie pracują wyłącznie nieliczne neurony, których zadaniem jest wykrywanie nagłych zmian w otoczeniu. Gdy takie zaburzenie porządku nastąpi, organ wzroku bardzo szybko "budzi się" i powraca do pełnej aktywności.

Ilya Nemenman tłumaczy, że odkrycie jego zespołu może dostarczyć wskazówek mogących wspomóc proces konstruowania tzw. sieci neuronowych. Mówiąc najprościej, są to złożone programy komputerowe (często obejmujące nawet wiele komputerów naraz), w których zadanie obliczeniowe zostaje "rozdzielone" pomiędzy liczne punkty w sieci, czyli "neurony". Dzięki wzajemnej wymianie informacji między nimi możliwe jest wykonanie niektórych typów zadań znacznie szybciej, niż jakąkolwiek znaną wcześniej metodą.

Jak tłumaczy badacz, dotychczas sieci neuronowe opierały się jedynie na okresowej wymianie danych. Częstotliwość nadawania sygnałów uznawano dotychczas za nieistotną dla działania tego typu programów. Obserwacja neuronów i odkrycie istotnej roli częstotliwości nadawania może być wytłumaczeniem, dlaczego konstruowane dotychczas sieci neuronowe nie spełniały do końca swojego zadania.

Zdaniem Amerykańskiej Fundacji Nauki odkrycie to jest na tyle istotne, że przyznała ona niemal natychmiast grant na przeprowadzenie badań nad konstrukcją sieci neuronowej nowej generacji. Udoskonalenie funkcjonowania tego typu programów może mieć bowiem kluczowe znaczenie w wielu dziedzinach, w których potrzebne jest zastosowanie zaawansowanych technik obliczeniowych, od klimatologii po identyfikację terrorystów na podstawie ich twarzy.

Share this post


Link to post
Share on other sites

Duży krok ku AI. Sieci neuronowe staną sie teraz podobniejsze do mózgów.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Niezwykle ostry wzrok i olbrzymia prędkość przetwarzania informacji wizualnych – to klucze do sukcesu sokoła wędrownego. Ten najszybszy z ptaków opada na ofiarę z prędkością przekraczającą 350 km/h. By ją złapać potrzebuje wyjątkowego zmysłu wzroku, który nie zawiedzie go przy tak olbrzymiej prędkości.
      Z wielu badań wiemy, że wzrok niektórych dużych ptaków drapieżnych jest dwukrotnie bardziej ostry niż wzrok człowieka. Jednak dotychczas nigdy nie badano, jak szybko działają oczy tych ptaków. Progową częstotliwość postrzegania migotania postanowili zbadać naukowcy z Lund.
      To pierwsze tego typu badania. Mój kolega Simon Potier i ja zbadaliśmy sokoła wędrownego, raroga zwyczajnego i myszołowca towarzyskiego. Mierzyliśmy, jak szybkie błyski światła są przez nie wciąż rejestrowane jako osobne błyśnięcia, mówi profesor Almut Kelber z Lund University.
      Okazało się, że najszybciej, bo z prędkością 129 Hz, działają oczy sokoła wędrownego. Oznacza to, że sokół jest w stanie odróżnić od siebie nawet 129 intensywnych błyśnięć światła w ciągu sekundy. W przypadku raroga zwyczajnego wartość ta wynosiła 102 Hz, a dla myszołowca było to 77 Hz. Dla porównania maksimum w przypadku człowieka wynosi 50–60 Hz, jednak już przy prędkości 25 klatek na sekundę (Hz) postrzegamy pojedyncze zdjęcia jako film, a nie serię nieruchomych obrazów.
      Progowa częstotliwość postrzegania migotania oddaje sposób, w jaki polują wymienione gatunki. Sokół wędrowny łowi szybko latające ptaki, a łupem myszłowca towarzystkiego padają znacznie wolniejsze ssaki na ziemi.
      Uczeni sądzą, że ptaki drapieżne polujące na inne ptaki muszą mieć najszybciej działający zmysł wzroku. Ich ofiary polują bowiem często na owady, więc same muszą mieć szybko działający wzrok, by móc szybko reagować na to, co dzieje się w powietrzu. Drapieżnik, by złapać takiego ptaka, musi zatem być jeszcze szybszy, a jego wzrok musi działać tak szybko, by miał czas na reakcję.
      Uczeni mają też nadzieję, że ich badania poprawią warunki życia ptaków hodowlanych. Osoby, które trzymają ptaki w klatkach, muszą zadbać o odpowiednie oświetlenie. Takie, które nie mruga, nie zmienia intensywności, inaczej ptaki nie będą czuły się dobrze, dodaje profesor Kelber.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wykorzystując przezczaszkową stymulację magnetyczną (ang. transcranial magnetic stimulation, TMS), która indukuje przepływ prądu w wybranym obszarze, kanadyjsko-amerykańskiego zespół wykazał, że lekka stymulacja elektryczna kory wzrokowej wyostrza węch.
      Dr Christopher Pack z Montreal Neurological Institute and Hospital - The Neuro wyjaśnia, że naukowcy chcieli sprawdzić, w jaki sposób dane z obszarów dedykowanych poszczególnym zmysłom łączą się, tworząc spójny obraz świata. Szczególnie zależało nam na tym, by przetestować hipotezę, że jeden zmysł może wpływać na przetwarzanie dotyczące innego zmysłu. Podczas eksperymentów najpierw stymulowano elektrycznie korę wzrokową. Okazało się, że wspomaga to rozpoznawanie wybranego zapachu w 3-elementowym zbiorze. W takim razie wszyscy jesteśmy w jakimś stopniu synestetykami.
      Uczestnicy studium zajmowali się zapachami przed i po przezczaszkowej stymulacji magnetycznej. TMS stosowano zgodnie z protokołem, który wcześniej okazał się skuteczny w zakresie poprawy percepcji wzrokowej.
      Bazując na uzyskanych wynikach, akademicy dywagują, że wzrok może spełniać nadrzędną rolę w łączeniu danych z poszczególnych zmysłów. Hipoteza ta jest właśnie badana.
    • By KopalniaWiedzy.pl
      Kwasy omega-3, które występują m.in. w olejach rybich, chronią nerwy przed uszkodzeniem i przyspieszają ich regenerację. To doskonała wiadomość dla pacjentów, którzy wskutek choroby czy urazu zmagają z bólem, paraliżem czy osłabieniem siły mięśniowej.
      Naukowcy z Queen Mary, University of London, których artykuł ukazał się w Journal of Neuroscience, skoncentrowali się na komórkach nerwów obwodowych. Mogą się one regenerować, ale mimo postępów w zakresie chirurgii, dobre rezultaty osiąga się raczej przy lekkich urazach.
      Na początku Brytyjczycy przyglądali się izolowanym mysim neuronom. Rozciągając je lub pozbawiając dopływu tlenu, symulowali uszkodzenia powstające podczas wypadku lub urazu. Oba zabiegi zabiły wiele komórek, ale podanie kwasów omega-3 zadziałało jak zabezpieczenie, znacznie ograniczając śmierć komórkową. W następnym etapie akademicy badali nerw kulszowy gryzoni. Stwierdzili, że dzięki kwasom omega-3 regenerował się szybciej i w większym zakresie. Dodatkowo zmniejszało się prawdopodobieństwo zaniku mięśni w następstwie uszkodzenia nerwu.
    • By KopalniaWiedzy.pl
      Po zakończeniu badań na makakach czubatych naukowcy uważają, że na nasze zachowanie i rozwój bardziej niż rodzina wpływają przyjaciele.
      Psycholodzy z Uniwersytetu w Portsmouth śledzili podążanie za czyimś spojrzeniem, które stanowi kluczowy wskaźnik rozwoju społecznego, ponieważ pozwala zebrać informacje o środowisku (gdzie znajduje się coś ciekawego, np. pożywienie, lub groźnego) i leży u podłoża zdolności rozumienia, co czują i o czym myślą inni. Małpy podążały za spojrzeniem wszystkich, bez względu na to, czy był to przyjaciel, krewny czy dominujący członek grupy, ale w przypadku przyjaciół prędkość spoglądania w tym samym kierunku była o wiele większa.
      Bazując na uzyskanych wynikach, dr Bridget Waller i doktorant Jerome Micheletta uważają, że u naczelnych przyjaźń odgrywa decydującą rolę w kształtowaniu postrzegania świata oraz sposobów radzenia sobie z wyzwaniami.
      Nasze odkrycia rzucają nieco światła na ewolucję przyjaźni i jej związki z poznaniem oraz komunikacją, czego dotąd nie badano. Micheletta uważa, że podobny wpływ przyjaciół na podążanie za spojrzeniem występuje u innych naczelnych, w tym ludzi.
      Podążanie za spojrzeniem nie jest reakcją automatyczną i zależy od sytuacji i relacji między zwierzętami. Zaobserwowane je u wielu gatunków: szympansów, kóz, delfinów, żółwi, kawek i, oczywiście, ludzi. Brytyjczycy wykazali, że to, jak szybko wyłapywane są subtelne zmiany w ruchach czyichś oczu i jaki jest kierunek naśladownictwa (kto śledzi czyj wzrok), nie jest wcale dziełem przypadku.
      [...] Na podążanie za spojrzeniem silnie wpływa stopień zaprzyjaźnienia makaków. Czemu makaki szybciej reagują na przyjaciela niż na jakiegokolwiek innego członka grupy? Być może dlatego, że informacje pozyskane za jego pośrednictwem są bardziej odpowiednie i użyteczne dla podążającego za spojrzeniem. [...] Poza tym znalezienie zasobów, np. pokarmu, jest bardziej prawdopodobne, jeśli współzawodnictwo podlega ograniczeniu [a tak właśnie jest, gdy spędza się czas z przyjacielem]. Będąc z kimś bliskim, małpa mniej obawia się społecznych zdarzeń, ponieważ np. podczas konfliktu można się wzajemnie wspierać, co sprzyja budowaniu jedności i stabilności.
    • By KopalniaWiedzy.pl
      Świadkowie, niestety, często się mylą. Okazuje się, że by zdobyć bardziej wiarygodne dowody dla sądu, warto polegać nie na tym, co człowiek mówi, ale gdzie patrzy.
      Ruchy oczu są szybko ściągane w rejon zapamiętanych obiektów - podkreśla prof. Deborah Hannula z University of Wisconsin Milwaukee. Śledzenie, gdzie i przez jaki czas ktoś patrzy, może pomóc w odróżnieniu obiektów wcześniej widzianych i nowych [...].
      Amerykańscy psycholodzy dali studentom do pooglądania 36 twarzy, które następnie poddano morfingowi. Nowe fizjonomie miały być bardzo podobne do oryginalnych. Później badani zapoznawali się z 36 trzyelementowymi zestawami. Poinformowano ich, że w zbiorze może w ogóle nie występować twarz z początku eksperymentu. Naciśnięciem guzika trzeba było zasygnalizować, która z twarzy pojawiła się w pierwotnym zbiorze. W razie nieobecności takiego elementu należało wybrać jakąkolwiek twarz. Eksperymentatorzy prosili też, by nie tylko wskazywać, ale i powiedzieć, czy dana fizjonomia pojawiła się wcześniej, czy nie.
      Gdy ochotnicy przyglądali się 3-elementowym zestawom, naukowcy nagrywali ruchy oczu. Ustalali, gdzie dany człowiek spojrzał na początku i ile czasu spędził na patrzeniu na ten obiekt. W czasie analizy twarze podzielono na 3 grupy: 1) rzeczywiście oglądane na początku eksperymentu, 2) twarze poddane morfingowi, które badani pomylili z twarzami pierwotnymi, 3) twarze zmorfowane, wskazane przy pełnej świadomości, że nie są tymi, o które chodziło.
      Okazało się, że ochotnicy łatwo identyfikowali twarze oglądane na wstępie. Dłużej na nie patrzyli i często kierowali tam wzrok od razu po zaprezentowaniu 3-elementowego zestawu. Interesujące jest to, że zanim badani wybrali twarz i zasygnalizowali to, naciskając guzik, w porównaniu do innych twarzy, nieproporcjonalnie dużo patrzyli na tę "docelową". Wszystko jednak zmieniało się po naciśnięciu guzika: spoglądanie dopasowywało się do reakcji behawioralnej, bez względu na to, czy była prawidłowa, czy nie.
      Hannula uważa, że metodę bazującą na monitorowaniu ruchów sakkadowych oczu można wykorzystać w badaniu pamięci dzieci czy osób chorych psychicznie (obie te grupy miewają problemy komunikacyjne).
×
×
  • Create New...