Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

NASA ma nowatorski pomysł na zasilanie pojazdów kosmicznych – fuzję jądrową w sieci krystalicznej

Recommended Posts

Rozpoczęcie fuzji jądrowej jest bardzo trudne. Wymaga ono zastosowania wielkich sił, które wymuszą na jądrach lekkich pierwiastków, jak np. wodór i hel, by się połączyły. Na Ziemi potrzebujemy do tego olbrzymich i kosztownych urządzeń. Badacze z NASA zaprezentowali właśnie metodę rozpoczęcia fuzji bez potrzeby budowy tokamaka czy stellaratora. Opracowana przez nich technika może stać się potencjalnym źródłem energii dla przyszłych misji w głębokim kosmosie.

Metoda, nazwana fuzją w sieci krystalicznej, została opisana na łamach Physical Review C. Eksperci wykorzystali erb i tytan. Pod dużym ciśnieniem wprowadzili doń deuter. Metal zatrzymuje go do czasu, aż pierwiastek będzie potrzebny do przeprowadzenia fuzji.

Podczas ładowania deuterem, sieć krystaliczna metalu pęka, by zrobić miejsce na deuter, wyjaśnia Theresa Benyo, fizyk analityczna, która stoi na czele zespołu badawczego. Otrzymujemy rodzaj proszku. Tak przygotowany metal jest gotowy do przeprowadzenia następnego kroku – pokonania bariery kulombowskiej, czyli sił elektrostatycznych uniemożliwiających jądrom deuteru, deuteronom, zbliżenie się do siebie.

Aby do tego doszło konieczna jest specyficzna sekwencja zderzeń cząstek. W akceleratorze elektrony uderzają w barierę z wolframu. Powstają wysokoenergetyczne fotony które są kierowane w stronę próbki naładowanej deuterem. Gdy foton trafia w deuteron, ten zostaje podzielony na proton i neutron. Neutron uderza zaś w kolejny deuteron, przyspieszając go. W wyniku tego procesu mamy więc deuteron, który porusza się na tyle szybko, by pokonać barierę kulombowską i połączyć z innym deuteronem.

Kluczem do sukcesu jest tutaj zjawisko ekranowania elektronów. Nawet bardzo energetyczne deuterony mogą nie być w stanie pokonać bariery kulombowskiej i do fuzji nie dojdzie. Tutaj z pomocą przychodzi sieć krystaliczna metalu. Elektrony w sieci krystalicznej tworzą rodzaj ekranu wokół stacjonarnego deuteronu, mówi Benyo. Ujemny ładunek elektronów powoduje, że otoczony przez nie deuteron (o ładunku dodatnim) jest chroniony przez odpychaniem przez drugi deuteron (również o ładunku dodatnim), dopóki oba jądra nie znajdą się bardzo blisko. Dzięki temu do fuzji może dojść.

Naukowcy z NASA dowiedli nie tylko możliwości przeprowadzenia w ten sposób fuzji atomów deuteru, ale zaobserwowali też proces Oppenheimera-Philipsa. To rodzaj reakcji jądrowej indukowanej deuteronem. Czasem, zamiast połączyć się z innym deuteronem, jądro deuteru zderza się z atomem w sieci krystalicznej albo tworząc izotop, ale zmieniając atom w inny pierwiastek. Okazało się, że w wyniku tej reakcji również powstaje energia, którą można wykorzystać.

Nie uzyskaliśmy zimnej fuzji, podkreśla fizyk Lawrence Forsley. To, co udało się uzyskać, jest gorącą fuzją, ale przeprowadzoną w inny niż dotychczas sposób.

Fuzja w sieci krystalicznej zachodzi początkowo w niższej temperaturze i przy niższym ciśnieniu niż w tokamaku, stwierdza Benyo. Uczona mówi, że gdy po przeprowadzeniu eksperymentu próbka była bardzo gorąca. Jej temperatura częściowo pochodzi z samej fuzji, a częściowo od wysokoenergetycznych fotonów.

Przed ekspertami z NASA jeszcze wiele pracy. Po tym, jak dowiedli, że można w ten sposób przeprowadzać fuzję, muszą udoskonalić cały proces tak, by był on bardziej wydajny i by zachodziło więcej reakcji. Gdy łączą się dwa deuterony powstaje albo proton i tryt albo hel-3 i neutron. W tym drugim przypadku neutron może uderzyć w inny deuteron, rozpędzić go i podtrzymać reakcję. Naukowcy pracują na tym, by uzyskać bardziej przewidywalną i podtrzymującą się reakcję.

Benyo mówi, że ostatecznym celem jej zespołu jest stworzenie systemu do zasilania pojazdów kosmicznych za pomocą fuzji w strukturze krystalicznej. Taki system przydałby się tam, gdzie np. nie można korzystać z energii słonecznej. A to, co można wykorzystać w kosmosie może też być wykorzystane na Ziemi.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Jackson Oswalt jest oficjalnie – czego dowodzi wpis do Księgi rekordów Guinnessa 2021 – najmłodszą osobą w historii, która przeprowadziła fuzję jądrową. Mieszkaniec Memphis w stanie Tennessee dokonał tego na kilka godzin przed swoimi... 13. urodzinami.
      Osiągnięcie nastolatka zostało zweryfikowane przez Fusor.net, The Open Source Fusor Research Consortium oraz Richarda Hulla, który zajmuje się fuzją jądrową i prowadzi listę naukowców-amatorów, którzy przeprowadzili fuzję jądrową w domu.
      Jackson zainteresował się fuzją w wieku 12 lat, gdy przeczytał o niej w internecie. Zainteresowała go też postać Taylora Wilsona, samouka w dziedzinie fizyki jądrowej, który przeprowadził fuzję w wieku 14 lat. W końcu nastolatek postanowił samodzielnie zbudować fuzor. Samodzielnie zaprojektował i zbudował odpowiednie urządzenie, fuzor, i połączył w nim dwa atomy deuteru.
      Młody człowiek przyznaje, że czasami ogarniało go zwątpienie, a rodzina i przyjaciele nie do końca rozumieli, co robi i jak planuje przeprowadzić syntezę jądrowa w domu. W końcu jednak się udało i wydane na fuzor 10 000 dolarów nie poszło na marne. Dnia 19 stycznia 2018 roku na kilka godzin przed swoimi 13 urodzinami Oswalt wykorzystał napięcie 50 000 woltów i połączył dwa atomy deuteru. Kolejne miesiące zajęło mu sprawdzanie wszystkiego i potwierdzanie swojego osiągnięcia. Musiał czekać kolejne miesiące, zanim wyniki jego pracy zostały niezależnie zweryfikowane.
      Obecnie Jackson ma 15 lat i – jak sam przyznaje – nie ma już tyle czasu co kiedyś. Rozgląda się jednak za kolejnym ambitnym celem naukowym do osiągnięcia.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NASA rozpoczęła odliczanie do momentu lądowania pojazdu OSIRIS-REx na asteroidzie Bennu. Za trzy tygodnie sonda na kilka sekund wyląduje na Bennu, pobierze próbki skał i pyłu, które następnie przywiezie na Ziemię.
      Pierwszą próbę pobrania próbek wyznaczono na 20 października. OSIRIS-REx ma wylądować wówczas w miejscu nazwanym Nighitngale, To skalisty obszar o średnicy 16 metrów, który znajduje się w północnej części asteroidy. Robotyczne ramię ma pobrać stamtąd fragmenty Bennu. Nightingale wybrano dlatego, że zawiera ono największą ilość drobnego materiału. Jest ono otoczone skałami wielkości budynków. Sam OSIRIS-REx jest rozmiarów dużego samochodu dostawczego. Lądowanie odbędzie się zatem w odległości kilku metrów od wielkich skał.
      Cała sekwencja pobierania próbek potrwa 4,5 godziny. Najpierw OSIRIS-REx opuści bezpieczną orbitę znajdującą się na wysokości 770 metrów nad asteroidą. Przez około 4 godziny będzie powoli opuszczał się na wysokość 125 metrów nad Bennu. Następnie odpalone zostaną silniki manewrowe, które ustabilizują jego pozycję i odpowiednio dopasują prędkość. Około 11 minut później pojazd powinien znaleźć się na wysokości 54 metrów. Silniki zostaną uruchomione po raz drugi, spowalniając sondę i ustawiając ją tak, by w momencie lądowania pozycja pojazdu była precyzyjnie dobrana do pozycji obracającej się asteroidy.
      OSIRIS-REx ma pozostać na powierzchni Bennu krócej niż 16 sekund. Zaraz po lądowaniu otwarty zostanie jeden z pojemników ze sprężonym azotem. Gaz ma spowodować wzbicie się w powietrze materiału z powierzchni Bennu. Materiał ten zostanie zebrany przez pojazd. Po wykonaniu zadania OSIRIS-REx uruchomi silniki i oddali się na bezpieczną odległość od Bennu.
      Jako, że Bennu znajduje się w odległości około 334 milionów kilometrów od Ziemi, bezpośrednie sterowanie OSIRIS-REx jest niemożliwe. Sygnał z sondy biegnie na Ziemię około 18,5 minuty. Dlatego też cała operacja zostanie przerowadzona automatycznie. Wcześniej sonda nawiąże kontakt z Ziemią i będzie oczekiwała na zgodę na rozpoczęcie operacji.
      OSIRIS-REx ma zebrać co najmniej 60 gramów materiału. Będzie to największa ilość próbek przywieziona na Ziemię od czasu programu Apollo. Zanim jednak pojazd wróci na Ziemię, trzeba będzie upewnić się, że materiał rzeczywiście został pobrany. Zostanie to sprawdzone dwukrotnie. Najpierw, 22 października, na Ziemię zostanie przesłane zdjęcie ramienia, które ma zebrać próbki. Dwa dni później OSIRIS-REx przeprowadzi manewr, polegający na obrocie wokół własnej osi, dzięki czemu określona zostanie masa zebranego materiału. Jeśli potwierdzi się, że zebrano zakładaną ilość próbek, zostaną one umieszczone w Sample Return Capsule, w której trafią na Ziemię. Jeśli okaże się, że materiału jest zbyt mało, podjęta zostanie kolejna próba jego zebrania. W takim wypadku OSIRIS-REx – nie wcześniej niż w styczniu 2021 – wyląduje w miejscu zapasowym nazwanym Osprey i wykorzysta tam dwa pozostałe pojemniki ze sprężonym azotem.
      Pojazd ma pożegnać się z Bennu z 2021 roku, a próbki mają wylądować na Ziemi 24 września 2023 roku.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NASA ujawniła, że powrót człowieka na Księżyc, zaplanowany na rok 2024, będzie kosztował 28 miliardów dolarów, z czego 16 miliardów to koszt księżycowego lądownika. Budżet musi zostać jeszcze zatwierdzony przez Kongres. Jeśli parlamentarzyści wyrażą zgodę, to kwota 28 miliardów USD zostanie rozpisana w budżecie na lata 2021–2025.
      Administrator NASA, Jim Bridenstine, przyznał w telefonicznym wywiadzie z dziennikarzami, że największym ryzykiem są tutaj kwestie polityczne. Za niecałe 2 miesiące w USA odbędą się zarówno wybory prezydenckie  jak i do Kongresu. Jako, że powrót USA na Księżyc to jedno z priorytetowych zadań, jakie przed NASA postawił prezydent Trump, można spodziewać się ostrych sporów wokół projektu i jego budżetu.
      Jim Bridenstine powiedział, że jeśli Kongres zatwierdzi pierwszą transzę wydatków w kwocie 3,2 miliarda dolarów, to NASA będzie w stanie przeprowadzić lądowanie w 2024 roku. Żeby było jasne, wybieramy się na Biegun Południowy. To bezdyskusyjne, stwierdził Bridenstine, odnosząc się do pogłosek, jakoby miejsce lądowania było podobne, jak podczas misji Apollo, kiedy to ludzi wysyłano na księżycowy równik.
      Obecnie NASA rozważa trzy propozycje budowy księżycowego lądownika. Jeden z nich rozwijany jest przez firmę Jeffa Bezosa Blue Origin, we współpracy z Lockheedem Martinem, Northropem Grummanem oraz Draperem. Jedną propozycję złożyła SpaceX i jedną firma Dynetics.
      Pierwszy, bezzałogowy lot w ramach programu Artemis, Artemis I został zaplanowany na listopad 2021. Wówczas to wystartuje rakieta SLS z kapsułą Orion. Misja Artemis II odbędzie się w roku 2023. Wówczas to astronauci okrążą Księżyc, ale nie będą lądowali. Na Srebrnym Globie wyląduje Artemis III. Astronauci pozostaną na Księżycu przez tydzień. W tym czasie opuszczą lądownik 2 do 5 razy. Badania, które przeprowadzą, będą całkowicie różne od tego, co robiono wcześniej. Musimy pamiętać, że w epoce Apollo sądziliśmy, że Księżyc jest suchy jak pieprz. Teraz wiemy, że jest tam pełno lodu i wiemy, że znajduje się on na Biegunie Południowym, dodaje Bridenstine.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NASA dała zielone światło dla ostatniego etapu przygotowań pierwszej w historii misji do asteroid trojańskich. Mija Lucy ma zostać wystrzelona w październiku 2021. Właśnie pomyślnie przeszła ona niezależne przeglądy pojazdu, instrumentów, budżetu oraz ram czasowych. Ten proces o nazwie Key Decision Point-D (KDP-D) oznacza, że misja może przejść z fazy C (Phase C), w której dokonuje się ostatecznych projektów oraz produkcji urządzeń, do fazy D, czyli dostarczanie, testowanie i składanie całości.
      Każdy etap misji jest bardziej ekscytujący niż poprzedni. Oczywiście zdaję sobie sprawę, że zanim Lucy wykona swoje zadanie minie kilkanaście lat, a pojazd przebędzie miliardy kilometrów i zbada nigdy nie badane asteroidy trojańskie. Jednak oglądanie, jak całość jest składana razem to niezwykłe doświadczenie, mówi główny naukowiec misji, doktor Hal Levison z Southwest Research Institute.
      Kolejnym ważnym etapem będzie Mission Operation Review, przewidziany na październik bieżącego roku. To ocena gotowości operacyjnej projektu oraz postępu prac nad jego wystrzeleniem. W tym czasie twórcy misji muszą wykazać, że systemy nawigacji, dowodzenia, operacji naukowych oraz cały etap planowania działają jak należy.
      Okienko startowe misji otworzy się 16 października 2021 roku. Następnie Lucy czeka długi lot do Jowisza i spotkanie z asteroidami. Asteroidy trojańskie, zwane trojanami Jowisza lub po prostu Trojanami, tworzą dwie grupy. Jedna z nich znajduje się w punkcie libracyjnym L4 orbity Jowisza, a druga w punkcie L5. Przyjęło się, że asteroidy z punktu L4 nazywa się imionami greckich bohaterów, dlatego też cała grupa zyskała nieoficjalną nazwę „Greków”. Z kolei asteroidy z punktu L5 zwane są „Trojańczykami”. Obie grupy poruszają się po orbicie Jowisza, a kierunek ruchu powoduje, że Trojańczycy gonią Greków.
      Co interesujące, zanim taki podział na grupy został ustalony dwie wcześniej odkryte asteroidy – Patroklus i Hektor – zostały już nazwane. W efekcie, w grupie Trojańczyków znajduje się grecki szpieg, a w grupie Greków jest szpieg trojański.
      Po wystrzeleniu Lucy dwukrotnie przeleci w pobliżu Ziemi. Następnie poleci do L4, czyli Greków. Tam w latach 2027–2028 spotka się z Eurybatesem i jego satelitą Polimele, a następnie z Leukusem i Orusem. Później podąży w kierunku L5 (Trojańczyków). Po drodze odwiedzi Donaldjohansona, asteroidę z głównego pasa, nazwaną tak na cześć odkrywcy szczątków Lucy. Ponownie przeleci też w pobliżu Ziemi. Po dotarciu do Trojańczyków w roku 2033 Lucy przeleci obok podwójnego układu Patroclus-Menoetius. Po wykonaniu zadania Lucy będzie krążyła pomiędzy obiema grupami asteroid trojańskich, odwiedzając każdą z nich co sześć lat.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przed dwoma dniami odbyła się oficjalna uroczystość, podczas której zainaugurowano montaż reaktora termojądrowego, tokamaka ITER. Dziesięć lat po rozpoczęciu budowy projekt ITER wszedł w decydującą fazę. W miesiącach poprzedzających niedawną uroczystość do Francji dostarczono główne elementy tokamaka, w tym cewki toroidalne – jedna Europy i dwie z Japonii. Kilka dni przed uroczystością z Korei dotarła pierwsza część komory próżniowej.
      Rozpoczynamy montaż ITER. To historyczny moment. Mija sto lat od chwili, gdy naukowcy zrozumieli, że Słońce i gwiazdy są zasilane przez fuzję jądrową, i sześć dekad od czasu, gdy w Związku Radzieckim zbudowano pierwszy tokamak. [...] Musimy jak najszybciej zastąpić paliwa kopalne [...] Posuwamy się do przodu tak szybko, jak to możliwe, mówił dyrektor generalny ITER, Bernard Bigot.
      ITER ma być urządzeniem badawczym. Największym dotychczas zbudowanym tokamakiem i pierwszym, w którym uzyskany zostanie dodatni bilans energetyczny. Naukowcy od kilkudziesięciu lat pracują nad fuzją termojądrową, ale dopiero niedawno udało się uzyskać z takiej reakcji więcej energii niż w nią włożono. Dokonali tego w 2013 roku specjaliści z amerykańskiego National Ignition Facility.
      Z fuzją termojądrową wiązane są olbrzymie nadzieje na uzyskanie źródła naprawdę czystej bezpiecznej energii. Różnica pomiędzy reaktorem fuzyjnym, a standardowym reaktorem atomowym polega na tym, że w reaktorze atomowym energię uzyskuje się z rozpadu ciężkich izotopów radioaktywnych. Zaś w elektrowni termojądrowej ma ona powstawać w wyniku łączenia się lekkich izotopów wodoru. Proces ten, podobny do procesów zachodzących w gwiazdach, niesie ze sobą dwie olbrzymie korzyści.
      Po pierwsze w reaktorze termojądrowym nie może zajść niekontrolowana reakcja łańcuchowa, podobna do tej, jaka zaszła w Czarnobylu. Po drugie, nie powstają tam odpady radioaktywne, które trzeba by przez tysiące lat przechowywać w specjalnych bezpiecznych warunkach.
      Fuzja jądrowa ma olbrzymi potencjał. Z 1 grama wodoru i trytu można teoretycznie uzyskać tyle energii, co ze spalenia 80 000 ton ropy naftowej. Deuter i tryt są łatwo dostępnymi, powszechnie występującymi na Ziemi pierwiastkami. ITAR zaś posłuży to badań i stworzenia technologii, które pozwolą na zbudowanie komercyjnych elektrowni fuzyjnych. Obecnie przewiduje się, że pierwszy zapłon ITER nastąpi w 2025 roku, a 10 lat później rozpoczną się regularne prace z kontrolowaną syntezą termojądrową.
      Obecnie przewiduje się, że pierwsze komercyjne elektrownie termojądrowe powstaną w latach 50. obecnego wieku.
      Uczestnikami projektu ITER są Unia Europejska, Chiny, Indie, Japonia, Korea Południowa, Rosja i Stany Zjednoczone. UE pokrywa 45,4% kosztów projektu, a pozostałe koszty są po równo (po 9,1%) podzielone pomiędzy resztę członków.

      « powrót do artykułu
×
×
  • Create New...