NASA ma nowatorski pomysł na zasilanie pojazdów kosmicznych – fuzję jądrową w sieci krystalicznej
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
NASA zaprezentowała pierwsze zdjęcia pełnowymiarowego prototypu sześciu teleskopów, które w przyszłej dekadzie rozpoczną pracę w kosmicznym wykrywaczu fal grawitacyjnych. Budowane przez ekspertów z NASA teleskopy to niezwykle ważne elementy misji LISA (Laser Interferometer Space Antenna), przygotowywanej przez Europejską Agencję Kosmiczną (ESA).
W skład misji LISA będą wchodziły trzy pojazdy kosmiczne, a na pokładzie każdego z nich znajdą się po dwa teleskopy NASA. W 2015 roku ESA wystrzeliła misję LISA Pathfinder, która przetestowała technologie potrzebne do stworzenia misji LISA. Kosmiczny wykrywacz fal grawitacyjnych ma rozpocząć pracę w 2035 roku.
LISA będzie składała się z trzech satelitów, tworzących w przestrzeni kosmicznej trójkąt równoboczny. Każdy z jego boków będzie miał długość 2,5 miliona kilometrów. Na pokładzie każdego z pojazdów znajdą się po dwa identyczne teleskopy, przez które do sąsiednich satelitów wysyłany będzie impuls z lasera pracującego w podczerwieni. Promień będzie trafiał w swobodnie unoszące się na pokładzie każdego satelity pokryte złotem kostki ze złota i platyny o boku 46 mm. Teleskopy będą odbierały światło odbite od kostek i w ten sposób, z dokładnością do pikometrów – bilionowych części metra – określą odległość pomiędzy trzema satelitami. Pojazdy będą umieszczone w takim miejscu przestrzeni kosmicznej, że na kostki nie będzie mogło wpływać nic oprócz fal grawitacyjnych. Zatem wszelkie zmiany odległości będą świadczyły o tym, że przez pojazdy przeszła fala grawitacyjna. Każdy z pojazdów będzie miał na pokładzie dwa teleskopy, dwa lasery i dwie kostki.
Formacja trzech pojazdów kosmicznych zostanie umieszczona na podobnej do ziemskiej orbicie wokół Słońca. Będzie podążała za naszą planetą w średniej odległości 50 milionów kilometrów. Zasada działania LISA bazuje na interferometrii laserowej, jest więc podobna do tego, jak działają ziemskie obserwatoria fal grawitacyjnych, takie jak np. opisywane przez nas LIGO. Po co więc budowanie wykrywaczy w kosmosie, skoro odpowiednie urządzenia istnieją na Ziemi?
Im dłuższe ramiona wykrywacza, tym jest on bardziej czuły na fale grawitacyjne o długim okresie. Maksymalna czułość LIGO, którego ramiona mają długość 4 km, przypada na zakres 500 Hz. Tymczasem w przypadku LISY będzie to zakres 0,12 Hz. Kosmiczny interferometr będzie więc uzupełnienie urządzeń, które posiadamy na Ziemi, pozwoli rejestrować fale grawitacyjne, których ziemskie urządzenia nie zauważą.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Za nieco ponad tydzień wystartuje misja Psyche, która ma za zadanie zbadanie pochodzenia jąder planetarnych. Celem misji jest asteroida 16 Psyche, najbardziej masywna asteroida typu M, która w przeszłości – jak sądzą naukowcy – była jądrem protoplanety. Jej badanie to główny cel misji, jednak przy okazji NASA chce przetestować technologię, z którą eksperci nie potrafią poradzić sobie od dziesięcioleci – przesyłanie w przestrzeni kosmicznej danych za pomocą lasera.
Ludzkość planuje wysłanie w dalsze części przestrzeni kosmicznej więcej misji niż kiedykolwiek. Misje te powinny zebrać olbrzymią ilość danych, w tym obrazy i materiały wideo o wysokiej rozdzielczości. Jak jednak przesłać te dane na Ziemię? Obecnie wykorzystuje się transmisję radiową. Fale radiowe mają częstotliwość od 3 Hz do 3 THz. Tymczasem częstotliwość lasera podczerwonego sięga 300 THz, zatem transmisja z jego użyciem byłaby nawet 100-krotnie szybsza. Dlatego też naukowcy od dawna próbują wykorzystać lasery do łączności z pojazdami znajdującymi się poza Ziemią.
Olbrzymią zaletą komunikacji laserowej, obok olbrzymiej pojemności, jest fakt, że wszystkie potrzebne elementy są niewielkie i ulegają ciągłej miniaturyzacji. A ma to olbrzymie znaczenie zarówno przy projektowaniu pojazdów wysyłanych w przestrzeń kosmiczną, jak i stacji nadawczo-odbiorczych na Ziemi. Znacznie łatwiej jest umieścić w pojeździe kosmicznym niewielkie elementy do komunikacji laserowej, niż podzespoły do komunikacji radiowej, w tym olbrzymie anteny.
Gdyby jednak było to tak proste, to od dawna posługiwalibyśmy się laserami odbierając i wysyłając dane do pojazdów poza Ziemią. Tymczasem inżynierowie od dziesięcioleci próbują stworzyć system skutecznej komunikacji laserowej i wciąż im się to nie udało. Już w 1965 roku astronauci z misji Gemini VII próbowali wysłać z orbity sygnał za pomocą ręcznego 3-kilogramowego lasera. Próbę podjęto na długo zanim w ogóle istniały skuteczne systemy komunikacji laserowej. Późniejsze próby były bardziej udane. W 2013 roku przesłano dane pomiędzy satelitą LADEE, znajdującym się na orbicie Księżyca, a Ziemią. Przeprowadzono udane próby pomiędzy Ziemią a pojazdami na orbicie geosynchronicznej, a w bieżącym roku planowany jest test z wykorzystanim Międzynarodowej Stacji Kosmicznej. Psyche będzie pierwszą misją, w przypadku której komunikacja laserowa będzie testowana za pomocą pojazdu znajdującego się w dalszych partiach przestrzeni kosmicznej.
Psyche będzie korzystała ze standardowego systemu komunikacji radiowej. Na pokładzie ma cztery anteny, w tym 2-metrową antenę kierunkową. Na potrzeby eksperymentu pojazd wyposażono w zestaw DSOC (Deep Space Optical Communications). W jego skład wchodzi laser podczerwony, spełniający rolę nadajnika, oraz zliczająca fotony kamera podłączona do 22-centymetrowego teleskopu optycznego, działająca jak odbiornik. Całość zawiera matrycę detektora składającą się z nadprzewodzących kabli działających w temperaturach kriogenicznych. Dzięki nim możliwe jest niezwykle precyzyjne zliczanie fotonów i określanie czasu ich odbioru z dokładnością większa niż nanosekunda. To właśnie w fotonach, a konkretnie w czasie ich przybycia do odbiornika, zakodowana będzie informacja. Taki system, mimo iż skomplikowany, jest mniejszy i lżejszy niż odbiornik radiowy. A to oznacza chociażby mniejsze koszty wystrzelenia pojazdu. Również mniejsze może być instalacja naziemna. Obecnie do komunikacji z misjami kosmicznymi NASA korzysta z Deep Space Network, zestawu 70-metrowych anten, które są drogie w budowie i utrzymaniu.
Komunikacja laserowa ma wiele zalet, ale nie jest pozbawiona wad. Promieniowanie podczerwone jest łatwo blokowane przez chmury i czy dym. Mimo tych trudności, NASA nie rezygnuje z prób. System do nadawania i odbierania laserowych sygnałów ma znaleźć się na pokładzie misji Artemis II, która zabierze ludzi poza orbitę Księżyca. Jeśli się sprawdzi, będziemy mogli na żywo obserwować to wydarzenie w kolorze i rozdzielczości 4K.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Zaledwie kilka tygodni po tym, jak National Ignition Facility doniosło o przełomowym uzyskaniu w reakcji termojądrowej większej ilości energii niż wprowadzono jej do paliwa, największy projekt energii fuzyjnej – ITER – informuje o możliwym wieloletnim opóźnieniu. International Thermonuclear Experimental Reactor (ITER) to międzynarodowy projekt, w ramach którego na południu Francji powstaje największy z dotychczas zbudowanych reaktorów termojądrowych. Ma to być reaktor eksperymentalny, który dostarczy około 10-krotnie więcej energii niż zaabsorbowana przez paliwo. Dla przypomnienia, NIF dostarczył jej 1,5 raza więcej.
Budowa ITER rozpoczęła się w 2013 roku, a w roku 2020 rozpoczęto montaż jego reaktora, tokamaka. Pierwsza plazma miała w nim powstać w 2025 roku. Jednak Pietro Barabaschi, który od września jest dyrektorem projektu, poinformował dziennikarzy, że projekt będzie opóźniony. Zdaniem Barabaschiego, rozpoczęcie pracy reaktora w 2025 roku i tak było nierealne, a teraz pojawiły się dwa poważne problemy. Pierwszy z nich, to niewłaściwe rozmiary połączeń elementów, które należy zespawać, by uzyskać komorę reaktora. Problem drugi to ślady korozji na osłonie termicznej. Usunięcie tych problemów "nie potrwa tygodnie, ale miesiące, a nawet lata", stwierdził menedżer. Do końca bieżącego roku poznamy nowy termin zakończenia budowy reaktora. Barabaschi pozostaje jednak optymistą i ma nadzieję, że opóźnienia uda się nadrobić i w roku 2035 reaktor będzie – jak się obecnie planuje – pracował z pełną mocą.
Fuzja jądrowa – czyli reakcja termojądrowa – to obiecujące źródło energii. Polega ona na łączeniu się atomów lżejszych pierwiastków w cięższe i uwalnianiu energii. To proces, który zasila gwiazdy. Taki sposób produkcji energii na bardzo wiele zalet. Nie dochodzi tutaj do uwalniania gazów cieplarnianych. Jest ona niezwykle wydajna. Proces łączenia atomów może zapewnić nawet 4 miliony razy więcej energii niż reakcje chemiczne, takie jak spalanie węgla czy gazu i cztery razy więcej energii niż wykorzystywane w elektrowniach atomowych procesy rozpadu atomów.
Co ważne, w wyniku fuzji jądrowej nie powstają długotrwałe wysoko radioaktywne odpady. Te, które powstają są na tyle mało radioaktywne, że można by je ponownie wykorzystać lub poddać recyklingowi po nie więcej niż 100 latach. Nie istnieje też ryzyko proliferacji broni jądrowej, gdyż w procesie fuzji nie używa się materiałów rozszczepialnych, a radioaktywny tryt nie nadaje się do produkcji broni. W końcu, nie ma też ryzyka wystąpienia podobnych awarii jak w Czernobylu czy Fukushimie.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Amerykańscy eksperci z National Ignition Facility poinformowali o uzyskaniu z fuzji jądrowej wyraźnie więcej energii niż wprowadzono w paliwo. Uzyskano tym samym punkt tzw. breakeven. Po kilkudziesięciu latach badań pojawiła się realna nadzieja na uzyskanie niemal niewyczerpanego źródła czystej energii.
Fuzja jądrowa – czyli reakcja termojądrowa – to obiecujące źródło energii. Polega ona na łączeniu się atomów lżejszych pierwiastków w cięższe i uwalnianiu energii. To proces, który zasila gwiazdy. Taki sposób produkcji energii na bardzo wiele zalet. Nie dochodzi tutaj do uwalniania gazów cieplarnianych. Na Ziemi są olbrzymie zasoby i wody i litu, z których można pozyskać paliwo do fuzji jądrowej, deuter i tryt. Wystarczą one na miliony lat produkcji energii. Takiego luksusu nie mamy ani jeśli chodzi o węgiel czy gaz ziemny, ani o uran do elektrowni atomowych. Tego ostatniego wystarczy jeszcze na od 90 (według World Nuclear Association) do ponad 135 lat (wg. Agencji Energii Atomowej). Fuzja jądrowa jest niezwykle wydajna. Proces łączenia atomów może zapewnić nawet 4 miliony razy więcej energii niż reakcje chemiczne, takie jak spalanie węgla czy gazu i cztery razy więcej energii niż wykorzystywane w elektrowniach atomowych procesy rozpadu atomów.
Co ważne, w wyniku fuzji jądrowej nie powstają długotrwałe wysoko radioaktywne odpady. Te, które powstają są na tyle mało radioaktywne, że można by je ponownie wykorzystać lub poddać recyklingowi po nie więcej niż 100 latach. Nie istnieje też ryzyko proliferacji broni jądrowej, gdyż w procesie fuzji nie używa się materiałów rozszczepialnych, a radioaktywny tryt nie nadaje się do produkcji broni. Nie ma też ryzyka wystąpienia podobnych awarii jak w Czernobylu czy Fukushimie. Jednak fuzja jądrowa to bardzo delikatny proces, który musi przebiegać w ściśle określonych warunkach. Każde ich zakłócenie powoduje, że plazma ulega schłodzeniu w ciągu kilku sekund i reakcja się zatrzymuje.
Fuzja jądrowa jest od wielu dekad przedmiotem zainteresowania naukowców na całym świecie. Problem w tym, że aby pokonać siły elektrostatyczne odpychające od siebie atomy potrzeba albo ekstremalnie wysokich temperatur, albo potężnych impulsów laserowych. To zaś wymaga budowy olbrzymich, bardzo skomplikowanych i kosztownych instalacji.
Istnieją różne pomysły na przeprowadzeni fuzji jądrowej, a najpopularniejszym z nich jest próba wykorzystania tokamaków. Optymalna temperatura, w której dochodzi do reakcji połączenia się deuteru z trytem w tokamaku wynosi od ok. 100 do ok. 200 milionów stopni Celsjusza. Tak rozgrzana materia znajduje się w stanie plazmy. Trzeba ją uwięzić w jakiejś niematerialnej pułapce. Może być nią np. silne pole magnetyczne. I to właśnie rozwiązanie stosowane jest w tokamakach i będzie je wykorzystywał słynny budowany we Francji reaktor badawczy ITER. Uwięzienie jest konieczne zarówno dlatego, by plazma się nie rozpraszała i nie chłodziła, jak i dlatego, by utrzymać ją z dala od ścian reaktora, które zostałyby uszkodzone przez wysokie temperatury.
Innym pomysłem jest zaś inercyjne uwięzienie plazmy. Z tej technologii korzysta właśnie National Ignition Facility (NIF). NIF otwarto w 2009 roku w w Kalifornii. To laboratorium badawcze, w którym zespół 192 laserów skupia wiązki na niewielkiej kapsułce zawierającej paliwo. Jest ono zgniatane prze światło lasera, a zapłon następuje w wyniku transformacji promieniowania laserowego w promieniowanie rentgenowskie. To efekt prac prowadzonych od dziesięcioleci. W latach 60. zespół fizyków z Lawrence Livermore National Laboratory – do którego należy NIF – pracujący pod kierunkiem Johna Nuckollsa, wysunął hipotezę, że zapłon fuzji jądrowej można by uzyskać za pomocą laserów. Właśnie poinformowano, że 5 grudnia bieżącego roku uzyskano długo oczekiwany zapłon.
Zapłon ma miejsce, gdy ciepło z cząstek alfa powstających w wyniku fuzji termojądrowej w centrum kapsułki z paliwem jest w stanie przezwyciężyć efekt chłodzący wywołany m.in. stratami promieniowania rentgenowskiego czy przewodnictwem elektronowym, zapewniając samopodtrzymujący mechanizm ogrzewania i gwałtowny wzrost ilości uzyskanej energii, czytamy na stronach NIF. Podczas eksperymentu do paliwa dostarczono 2,05 megadżula (MJ) energii, a w wyniku reakcji uzyskano 3,15 MJ.
Zapłon uzyskano w niewielkim cylindrze zwanym hohlraum, wewnątrz którego znajdowała się kapsułka z paliwem. Wewnątrz niej energia światła laserowego zmieniła się w promieniowanie rentgenowskie, doszło do kompresji kapsułki, jej implozji i pojawienia się wysokotemperaturowej plazmy, wewnątrz której panowało wysokie ciśnienie.
To ważny krok, jednak zanim do naszych domów popłynie czysta energia uzyskana drogą fuzji jądrowej, musimy nauczyć się uzyskiwać wielokrotnie więcej energii niż kosztowało nas doprowadzenie do reakcji. Do tego zaś potrzeba wielu naukowych i technologicznych przełomów. Ich osiągnięcie może potrwać całe dekady.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W National Ignition Facility dokonano przełomowego kroku na drodze ku uzyskiwaniu energii z fuzji jądrowej. Po raz pierwszy w historii w tego typu systemie udało się uzyskać porównywalną ilość energii jak ta, która została zaabsorbowana przez paliwo podczas inicjowania reakcji. Jednak do uzyskania większej ilości energii niż włożono do całego systemu jeszcze daleka droga. Ostatni eksperyment wykazał też, że naukowcom z Lawrence Livermore National Laboratory udało się zwiększyć wydajność systemu o cały rząd wielkości.
Przełom dokonał się, gdy cząsteczki alfa, jądra helu powstałe w wyniku fuzji deuteru i trytu, oddały swoją energię do paliwa, zamiast, jak zwykle, wydostać się z niego. Ta dodatkowa energia przyspieszyła fuzję, prowadząc do jeszcze większej produkcji cząsteczek alfa. Taki samonapędzający się mechanizm to początek fuzji jądrowej.
Najnowszy eksperyment został bardzo szczegółowo zaprojektowany tak, by nie doszło do pęknięcia plastikowych osłon, w których znajduje się paliwo. Prawdopodobnie to właśnie degradacja osłoń spowodowała, że poprzednie eksperymenty były nieudane. Osiągnięcie celu było możliwe dzięki zmodyfikowaniu impulsu laserowego, za pomocą którego paliwo jest kompresowane.
W National Ignition Facility używa się 192 laserów, które kompresują miniaturowe pigułki z paliwem deuterowo-trytowym do tego stopnia, iż w wyniku fuzji jądrowej dochodzi do uwolnienia dodatkowej energii. Kapsułki mają średnice mniejszą niż połowa średnicy ludzkiego włosa. Wewnątrz znajdują się tryt i deuter, które przez mniej niż miliardową część sekundy zostają poddane olbrzymiemu ciśnieniu i temperaturze.
Obecnie naukowcy starają się wykorzystać dwie różne koncepcje rozpoczęcia fuzji jądrowej. Jedna, z której korzysta National Ignition Facility, zakłada użycie laserów do skompresowania paliwa i utrzymania go na miejscu za pomocą inercyjnego uwięzienia. Z kolei w Europie próbuje się innego podejścia. W Joint European Torus w Wielkiej Brytanii oraz w reaktorze ITER we Francji próbuje się utrzymać plazmę na miejscu za pomocą uwięzienia magnetycznego.
Celem wszystkich tych prac jest rozpoczęcie fuzji jądrowej i uzyskanie z niej energii.
Po dziesiątkach latach badań i niezwykle powolnego rozwoju techniki fuzji jądrowej w końcu udało się uzyskać nadmiarową energię. Przełom dokonany w otwartym w 2009 NIF powinien bardziej przychylnie nastawić doń krytyków tego eksperymentu. Warto przypomnieć, że NIF bił rekordy impulsu i uzyskanej mocy laserowej. Duże koszty związane z utrzymaniem NIF skłoniły jednak Kongres USA do podjęcia decyzji, iż ośrodek ma w większym niż wcześniej stopniu zajmować się badaniami nad bronią jądrową. To jednak, jak widzimy, nie przeszkodziło w osiągnięciu sukcesu na pierwotnym polu zainteresowań NIF.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.