Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Naukowcy z UJ współodkrywcami wysokoenergetycznego promieniowania gamma z dżetu w Centaurus A

Rekomendowane odpowiedzi

W czasopiśmie „Nature” ukazała się praca badaczy z międzynarodowego obserwatorium H.E.S.S. (w tym zespołu z Obserwatorium Astronomicznego UJ), prezentująca odkrycie wysokoenergetycznej emisji gamma z relatywistycznej strugi, „dżetu”, bliskiej aktywnej galaktyki Centaurus A („Cen A”). Wykorzystując w sumie 202 godziny obserwacji (to odpowiada około 1/6 całego czasu obserwacyjnego w ciągu roku!) stwierdzono, że znana już wcześniej emisja wysokoenergetycznego promieniowania gamma z tego obiektu pochodzi nie tylko z okolicy znajdującej się w jego centrum supermasywnej czarnej dziury, ale rozciąga się również wzdłuż dżetu, na tysiące lat świetlnych w głąb badanej galaktyki.

Promieniowanie gamma to generowane w kosmosie promieniowanie elektromagnetyczne o wielkich energiach, które powstaje głównie w wyniku oddziaływania przyspieszonych i naładowanych elektrycznie cząstek z otaczającym je gazem lub polem promieniowania. Dżety są potężnymi emiterami promieniowania w całym widmie elektromagnetycznym, od fal radiowych, do zakresu promieniowania gamma. Pochodzą one z sąsiedztwa supermasywnych czarnych dziur aktywnych jąder galaktyk i poruszają się z prędkością bliską prędkości światła.

Badanie struktury dżetu do tej pory odbywało się za pomocą obserwacji radiowych, optycznych i rentgenowskich charakteryzujących się dużą czułością i zdolnością rozdzielczą. Co się zaś tyczy promieniowania gamma, jak dotąd obserwowano jedynie nierozdzieloną emisję, która mogłaby w całości pochodzić z aktywnego centrum galaktyki. Przełom w tym zakresie, zaprezentowany we wspomnianej na początku pracy, okazał się możliwy dzięki technice pomiaru wykorzystującej optyczne „teleskopy Czerenkowa” z obserwatorium H.E.S.S.

Wysokoenergetyczne promienie gamma z kosmosu rejestruje się w tym obserwatorium dzięki wytwarzanym przez nie w górnych warstwach atmosfery kaskadom cząstek wtórnych, olbrzymich pęków lecących z prędkością bliską prędkości światła elektronów i pozytonów (anty-elektronów). W rzeczywistości promieniowanie gamma jest dla nas niewidoczne, bowiem atmosfera Ziemi pochłania je niemal w całości. Jednakże, zderzając się z nią przy dużych energiach, wytwarza w niej ono owe charakterystyczne kaskady cząstek, które ostatecznie generują promieniowanie widzialne, „świecąc” w zakresie optycznym (jest to tak zwane promieniowanie Czerenkowa). Teleskopy H.E.S.S., dzięki dużej precyzji pomiarów tych poświat obserwowanych optycznie, mogą zatem pośrednio badać także odpowiadające za ich powstanie promieniowanie gamma pochodzące ze źródeł kosmicznych, i to ze zdolnością rozdzielczą znacznie przewyższającą możliwości obserwatoriów satelitarnych badających emisję gamma sponad atmosfery (takich, jak obserwatorium Fermiego). To właśnie dzięki temu stało się możliwe obecne odkrycie – dla „Cen A” potrzeba było tylko niezwykle długich obserwacji jego słabej emisji gamma oraz bardzo precyzyjnej i trudnej analizy danych obserwacyjnych.

Co tak naprawdę oznacza odkrycie emisji promieniowania gamma rozciągającego się nie tylko w okolicy czarnej dziury, ale i wzdłuż całego dżetu, mierzącego tysiące lat świetlnych? Otóż, w dżecie „Cen A”, daleko od centrum produkującej go galaktyki macierzystej, muszą działać potężne procesy przyśpieszania cząstek – o energii większej niż ta, jaką mają protony przyśpieszane przez fizyków w najpotężniejszych ziemskich akceleratorach. Natura tych procesów nie jest w pełni wyjaśniona – naukowcy podejrzewają, że mogą być one związane z przyśpieszaniem cząstek w falach uderzeniowych lub w procesach tzw. rekoneksji pola magnetycznego. Biorąc pod uwagę fakt, że dżet „Cen A” nie jest wyjątkowy pod względem mocy, długości ani prędkości, prawdopodobne jest też, że tak wysoce przyśpieszone elektrony występują powszechnie w wielkoskalowych dżetach galaktyk aktywnych.

To ważne dla astronomii odkrycie zostało dokonane z udziałem polskich badaczy, w tym zespołu z Obserwatorium Astronomicznego UJ, w skład którego wchodzą Michał Ostrowski, Marek Jamrozy, Łukasz Stawarz i Angel Priyama Noel.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Europejski radioteleskop LOFAR (LOw Frequency ARray) – którego stacje znajdują się również w Polsce – zanotował najdłuższą parę dżetów wydobywających się z czarnej dziury. Struktura nazwana Porfyrion – od imienia jednego z gigantów z mitologii greckiej – ma długość 23 milionów lat świetlnych. Dotychczas, na podstawie obserwacji i obliczeń sądzono, że maksymalna długość takich dżetów jest znacznie mniejsza.
      Dotychczas sądzono, że limit długości pary dżetów wynosi 4,6–5,0 Mpc (megaparseków). Parsek to 3,26 roku świetlnego, zatem mówimy tutaj o około 16 milionach lat świetlnych. W 2022 roku ten sam zespół naukowy poinformował o istnieniu dżetu wydobywającego się z galaktyki radiowej Alkynoeus. Ma on długość 5 Mpc i był opisywany jako największa struktura pochodzenia galaktycznego. Brak dłuższych par dżetów oraz wyliczenia teoretyczne skłoniły naukowców do wysunięcia hipotezy, że 5 Mpc jest limitem długości.
      Informujemy o zaobserwowaniu struktury radiowej rozciągającej się na około 7 Mpc, czytamy na łamach Nature. Istnienie dżetu dowodzi, że tego typu struktury mogą uniknąć zniszczenia przez niestabilności magnetohydrodynamiczne na przestrzeniach kosmologicznych, nawet jeśli powstały w czasie, gdy wszechświat był znacznie bardziej gęsty, niż obecnie. Nie wiadomo, w jaki sposób tak długotrwała stabilność mogła zostać zachowana.
      Odkrycie sugeruje też, że gigantyczne dżety mogły odgrywać większą niż sądzono rolę w formowaniu się galaktyk we wczesnym wszechświecie. Astronomowie uważają, że galaktyki i ich czarne dziury wspólnie przechodzą ewolucję, a jednym z kluczowych elementów dżetów jest emitowanie olbrzymich ilości energii, które wpływają na ich galaktyki macierzyste i galaktyki z nimi sąsiadujące. Nasze odkrycie pokazuje, że oddziaływanie takich dżetów rozciąga się na większe odległości, niż sądziliśmy, mówi współautor badań, profesor George Djorgovski z Kalifornijskiego Uniwersytetu Technologicznego.
      Autorzy nowych badań wykorzystali LOFAR do poszukiwania olbrzymich dżetów. Dżety to powszechne zjawisko, jednak zwykle są stosunkowo niewielkie. Wcześniej znano setki naprawdę dużych struktur tego typu i uważano, że rzadko one występują. Teraz badacze zarejestrowali ich ponad 10 000. Wielkie dżety były znane wcześniej, ale nie wiedzieliśmy, że jest ich tak dużo, dodaje profesor Martin Hardcastle z University of Hertfordshire.
      Poszukiwania olbrzymich dżetów rozpoczęły się od dość przypadkowego spostrzeżenia. W 2018 roku główny autor obecnych badań, Martijn S. S. L. Oei, wraz z zespołem wykorzystał LOFAR do obserwowania włókien rozciągających się pomiędzy galaktykami. Na obrazach naukowcy dostrzegli zaskakująco dużo wielkich dżetów. Nie mieliśmy pojęcia, że jest ich aż tyle, mówi Oei.
      Naukowcy zaczęli więc szukać kolejnych wielkich dżetów i trafili na Porfyriona. Poza LOFAR-em wykorzystali kilka innych teleskopów, dzięki którym określili, skąd pochodzi i jak daleko od nas się znajduje. Zauważyli nie tylko, że struktura ta pochodzi ze znacznie wcześniejszych okresów istnienia wszechświata, niż inne. Stwierdzili, że gigant znajduje się w regionie wszechświata, w którym istnieje wiele czarnych dziur tego samego typu, z którego on pochodzi. To aż może wskazywać, że przez astronomami jeszcze wiele podobnych odkryć. Możemy obserwować wierzchołek góry lodowej, mówi Oei.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Teleskop Hubble'a dokonał unikatowych pomiarów, z których wynika, że dżet wydobywający się z obiektu GW170817 porusza się z prędkością przekraczającą 99,97% prędkości światła. Wykryta w sierpniu 2017 roku fala grawitacyjna GW170817 była niezwykłym i jedynym dotychczas zarejestrowanym wydarzeniem swego rodzaju. Pochodziła ze zlania się dwóch gwiazd neutronowych i zabłyśnięcia kilonowej SSS17a, trwała wyjątkowo długo i była powiązana z emisją promieniowania gamma.
      Wydarzenie było tak niezwykłe, że zaczęło obserwować je kilkadziesiąt teleskopów z całego świata. Okazało się, że to pierwszy obiekt, w przypadku którego powiązano fale grawitacyjne z obecnością światła, a powstały w czasie rozbłysku dżet zawiera ilość energii porównywalną z ilością produkowaną przez wszystkie gwiazdy Drogi Mlecznej w ciągu roku. GW170817 zostało wykorzystane m.in. do potwierdzenia Ogólnej Teorii Względności. Wykrycie GW170817 było niezwykle ważnym momentem w rozwoju astronomii w dziedzinie czasu, która bada zmiany ciał niebieskich w czasie.
      Teleskop Hubble'a zaczął obserwować to wydarzenie już 2 dni po jego odkryciu. Gwiazdy neutronowe zapadły się w czarną dziurę, która zaczęła wciągać okoliczną materię. Utworzył się szybko obracający się dysk materii, z którego biegunów wydobywa się potężny dżet. Naukowcy od wielu lat analizują dane dostarczone przez Hubble'a i inne teleskopy obserwujące GW170817.
      Zespół pracujący pod kierunkiem Kunala P. Mooleya z California Institute of Technology połączył dane z Hubble'a z danym dostarczonymi przez grupę radioteleskopów. Dane radiowe zebrano 75 i 230 dni po eksplozji. Obliczenie prędkości dżetu wymagało wielomiesięcznych szczegółowych analiz, mówi Jay Anderson ze Space Telescope Science Institute.
      Początkowe pomiary Hubble'a wykazały, że dżet porusza się z pozorną prędkością wynoszącą 7-krotność prędkości światła. Późniejsze pomiary za pomocą radioteleskopów pokazały, że dżet zwolnił do pozornej 4-krotnej prędkości światła.
      Jako, że nic nie może poruszać się szybciej niż światło, tak duża prędkość dżetu jest złudzeniem. Ponieważ dżet porusza się w kierunku Ziemi niemal z prędkością światła, światło wyemitowane później ma do przebycia krótszą drogę niż to, wyemitowane wcześniej. Dżet goni własne światło. Przez to obserwatorowi wydaje się, że od emisji światła z dżetu minęło mniej czasu niż w rzeczywistości. To zaś powoduje przeszacowanie prędkości obiektu. Z naszych analiz wynika, że dżet w momencie pojawienia się poruszał się z prędkością co najmniej 99,97% prędkości światła, mówi Wenbin Lu z Uniwersytetu Kalifornijskiego w Los Angeles.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Troje astronomów, poszukując źródeł atomów antyhelu, które zostały zarejestrowane przez Alpha Magnetic Spectrometer (AMS-02) znajdujący się na pokładzie Międzynarodowej Stacji Kosmicznej, wpadło na ślad 14 gwiazd zbudowanych z antymaterii – antygwiazd.
      Simon Dupourque, Luigi Tibaldo oraz Peter von Ballmoos z Uniwersytetu w Tuluzie znaleźli antygwiazdy w archiwalnych danych Fermi Gamma-ray Telescope. Koncepcja istnienia antygwiazd jest pomysłem kontrowersyjnym, jeśli jednak one istnieją to powinny być widoczne dzięki słabemu sygnałowi promieniowania gamma, który największą moc osiąga przy energii 70 MeV. Sygnał ten pochodzić ma z cząstek materii opadających na gwiazdę i przez nią anihilowanych.
      Antyhel-4 uzyskano po raz pierwszy w 2011 roku podczas zderzeń cząstek w Relativistic Heavy Ion Collider w Brookhaven National Laboratory. Wówczas naukowcy doszli do wniosku, że jeśli pierwiastek ten zostanie wykryty w przestrzeni kosmicznej, będzie to oznaczało, że pochodzi on z fuzji we wnętrzu antygwiazd.
      W 2018 roku AMS-02 wykrył w promieniowaniu kosmicznym 8 atomów antyhelu: sześć atomów antyhelu-3 oraz dwa antyhelu-4. Wówczas jednak uznano, że atomy te powstały w wyniku oddziaływania promieniowania kosmicznego na materię międzygwiezdną, w wyniku czego powstała antymateria.
      Jednak kolejne analizy zasiały wątpliwość co do pochodzenia antyhelu. Stwierdzono bowiem, że im więcej nukleonów w jądrze pierwiastka antymaterii, tym trudniej takiemu pierwiastkowi uformować się w wyniku oddziaływania promieniowania kosmicznego. Naukowcy obliczyli wówczas, że prawdopodobieństwo, by antyhel-3 powstał w wyniku oddziaływania promieni kosmicznych jest 50-krotnie mniejsze niż powstanie jąder zarejestrowanych przez AMS, a powstanie antyhelu-4 w wyniku oddziaływania promieniowania kosmicznego jest aż 105 mniejsze niż jąder, które zarejestrowano na Międzynarodowej Stacji Kosmicznej.
      Po tych badaniach naukowcy skupili się więc na poszukiwaniu źródła antyhelu, w tym w stronę mało wiarygodnie brzmiącego wyjaśnienia, mówiącego, że pierwiastek ten powstał w antygwiazdach.
      Zgodnie z obowiązującymi teoriami, podczas Wielkiego Wybuchu powinno powstać tyle samo materii i antymaterii. Następnie powinno dojść do ich anihilacji i powstania wszechświata, który będzie pełen promieniowania, a pozbawiony będzie materii. Żyjemy jednak we wszechświecie zdominowanym przez materię, a to oznacza, że podczas Wielkiego Wybuchu musiało powstać więcej materii niż antymaterii. Problem ten wciąż stanowi nierozwiązaną zagadkę.
      Większość naukowców od dekad twierdzi, że obecnie we wszechświecie antymateria niemal nie występuje, z wyjątkiem niewielkich ilości powstających w wyniku zderzeń materii, mówi Tibaldo. Jednak odkrycie antyhelu w przestrzeni kosmicznej może podważać to przekonanie. Może bowiem oznaczać, że istnieją antygwiazdy.
      Wspomnianych 14 potencjalnych antygwiazd zostało zidentyfikowanych w katalogu obejmującym 5878 źródeł promieniowania gamma zarejestrowanych w ciągu 10 lat przez Fermi Gamma-ray Telescope. Na podstawie tych danych Dupourque, Tibaldo i von Ballmoos wyliczyli pewne cechy, które powinny mieć antygwiazdy obecne w Drodze Mlecznej.
      Naukowcy stwierdzają, że jeśli antygwiazdy utworzył się w dysku galaktyki obok zwyczajnych gwiazd, to powinna istnieć 1 antygwiazda na 400 000 zwykłych gwiazd. Jeśli jednak antygwiazdy są gwiazdami pierwotnymi i powstały we wczesnym wszechświecie w czasie, gdy Droga Mleczna dopiero się tworzyła, co oznacza, że znajdują się w najstarszych regionach naszej galaktyki – w galaktycznym halo – to mogą stanowić nawet 20% wszystkich gwiazd.
      Jeśli przyjmiemy, że antymateria została uwięziona w antygwiazdach, to mamy tutaj prawdopodobne wyjaśnienie, dlaczego nie doszło do anihilacji. Szczególnie, jeśli antygwiazdy istnieją w regionach, gdzie zwykła materia występuje rzadko, w takich jak galaktyczne halo, mówi von Ballmoos.
      Oczywiście trzeba też przyjąć, że zarejestrowanych 14 kandydatów na antygwiazdy to coś zupełnie innego. Dlatego też Dupourque, Tibaldo i von Ballmoos sugerują, że następnym krokiem badań może być sprawdzenie, czy tych 14 źródeł emituje też sygnały w innych zakresach, które mogłyby świadczyć o tym, że są to np. aktywne jądra galaktyk czy pulsary.
      Autorzy badań opublikowali ich wyniki na łamach Physical Review D.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dzięki Very Large Telescope astronomom udało się odkryć i zbadać najbardziej odległe źródło emisji radiowej z dżetami. Źródłem tym jest kwazar położony w odległości 13 miliardów lat świetlnych od Ziemi. Odkrycie pozwoli na lepsze zrozumienie wczesnego wszechświata.
      Kwazary to bardzo jasne obiekty znajdujące się w centrach niektórych galaktyk. Są one zasilane przez supermasywne czarne dziury. Promieniowanie kwazara powstaje w dysku akrecyjnym otaczającą czarną dziurę. Gaz i pył opadające na dysk rozgrzewają się, emitując olbrzymie ilości promieniowania.
      Nowo odkryli kwazar, P172+18 [PDF], powstał, istniał, gdy wszechświat miał zaledwie 780 milionów lat. Znamy bardziej odległe kwazary, ale przy żadnym z nich nie zauważono dotychczas dżetów.
      Kwazar zasilany jest przez czarną dziurę o masie około 300 milionów razy większej od masy Słońca. Pochłania ona materię bardzo szybko. To jedna z najszybciej przybierających na masie czarnych dziur, mówi współautorka badań Chiara Mazzucchelli.
      Specjaliści sądzą, że istnieje związek pomiędzy szybkim pochłanianiem materii przez czarną dziurę, a potężnymi dżetami z kwazarów. Niewykluczone, że dżety zaburzają przepływ gazu w pobliżu czarnej dziury powodując, że szybciej opada on na dysk akrecyjny. Badanie kwazarów z dżetami może więc wiele powiedzieć na temat szybkiego pojawienia się supermasywnych czarnych dziur we wczesnym wszechświecie.
      Drugi z autorów badań, Eduardo Bañados z Instytutu Astronomii im. Maxa Plancka mówi, że wkrótce uda się znaleźć więcej podobnych kwazarów, niewykluczone, że jeszcze dalej położonych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Fizyk z Uniwersytetu Kalifornijskiego w Riverside przeprowadził obliczenia, z których wynika, że bąble wypełnione gazem zawierającym pozytonium są stabilne w ciekłym helu. Obliczenia przybliżają nas do powstania lasera emitującego promieniowanie gamma, który może mieć zastosowanie w obrazowaniu medycznym, napędzie kosmicznym i leczeniu nowotworów.
      Pozytonium to układ złożony z elektronu (e-) i jego antycząstki pozytonu (e+) krążących wokół wspólnego środka masy. Jego średni czas życia wynosi około 142 ns, a następnie pozyton i elektron ulegają anihilacji, podczas której emitowane jest promieniowanie gamma.
      Do stworzenia lasera gamma potrzebujemy pozytonium w stanie zwanym kondensatem Bosego-Einsteina. Z moich obliczeń wynika, że zanurzone w ciekłym helu bąble składające się z milionów pozytonium miałyby gęstość sześciokrotnie większą od powietrza i tworzyłyby kondensat Bosego-Einsteina, mówi autor badań, Allen Mills z Wydziału Fizyki i Astronomii. Praca Millsa ukazał się właśnie w Physical Review A.
      Hel, drugi najbardziej rozpowszechniony pierwiastek we wszechświecie, przybiera formę ciekłą jedynie w bardzo niskich temperaturach. Hel ma ujemne powinowactwo do pozytonium, więc w ciekłym helu powstają bąble, gdyż hel odpycha pozytonium.
      Mills, który stoi na czele Positron Laboratory w UC Riverside poinformował, że jego laboratorium rozpoczęło konfigurację swoich urządzeń tak, by uzyskać stabilne bąble pozytonium w ciekłym helu. Mogą one służyć jako źródło zbudowanego z pozytonium kondensatu Bosego-Einsteina. Chcemy w najbliższym czasie przeprowadzić eksperymenty z tunelowaniem pozytonium przez grafenową membranę, która nie przepuszcza zwykłych atomów, w tym atomów helu, oraz stworzenie lasera działającego dzięki pozytonium. Laser taki mógłby znaleźć zastosowanie w informatyce kwantowej, mówi Mills.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...