Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Na Politechnice Wrocławskiej powstaje opaska monitorująca, co dzieje się w mózgu w czasie urazu

Rekomendowane odpowiedzi

Lekka silikonowa opaska może być zakładana pod kask w czasie uprawiania sportu. Wynalazek mierzy przyspieszenia działające na głowę człowieka i aktywność elektryczną kory mózgowej. Dzięki niemu od razu wiadomo, co dzieje się w mózgu, gdy dochodzi do upadku albo zderzenia.

Nad opaską pracuje zespół naukowców z Wydziału Mechanicznego Politechniki Wrocławskiej i dwaj neurochirurdzy – z Wrocławia i Legnicy. Ich urządzenie składa się z kilkunastu czujników – akcelerometrów (mierzących przyspieszenia działające na głowę) oraz czujników pulsu, temperatury ciała, stopnia natlenienia krwi i kwasowości wydzielanego potu. Są tam także elektrody, dzięki którym możliwa jest elektroencefalografia, czyli EEG – pomiar aktywności elektrycznej kory mózgowej. Wszystkie te dane są zapisywanie na karcie pamięci, a potem przetwarzane przez komputer. Sama opaska jest wykonana z lekkiego i przyjemnego dla skóry silikonu i ma (opcjonalne) paski przechodzące przez środek głowy i wkładki douszne z czujnikami ruchu (IMU).

Nikt do tej pory nie mierzył, co dzieje się z korą mózgową w czasie uderzenia głowy – podkreśla dr hab. inż. Mariusz Ptak z Katedry Konstrukcji Badań Maszyn i Pojazdów na Wydziale Mechanicznym, kierownik projektu. Zwykle gdy dochodzi do poważniejszego wypadku, EEG jest wykonywane kilkadziesiąt minut po takim zdarzeniu w szpitalu. My mamy szansę zobaczyć, jak zmienia się potencjał elektryczny w mózgu w czasie rzeczywistym. Przylegające do skóry elektrody są jednym z najważniejszych elementów naszej opaski. Każdy organizm jest bowiem inny i u niektórych ludzi nawet mały uraz może być przyczyną bardzo poważnych powikłań. Dlatego sam pomiar sił działających na głowę mógłby być niewystarczającym wskaźnikiem dla określenia ryzyka poważnego urazu. EEG pozwala nam bardzo dokładnie przyjrzeć się wszystkiemu, co dzieje się w głowie człowieka.

Badania na zawodniku futbolu amerykańskiego

Do tej pory badania na ludzkim mózgu związane z uderzeniami w czasie rzeczywistym – z oczywistych powodów – prowadzono na ciałach zmarłych.

Nie wiemy natomiast, co dzieje się w mózgu osoby żyjącej. Wyniki mogą być zupełnie inne od tych dostępnych w literaturze, bo przecież wiele parametrów jest skrajnie odmiennych, jak choćby stopień nawodnienia organizmu – tłumaczy Johannes Wilhelm, doktorant na Wydziale Mechanicznym uczestniczący w tym projekcie. Dzięki opasce możemy dowiedzieć się np., co prowadzi do utraty świadomości człowieka. Będziemy mogli przeanalizować, jakie fale przechodzą przez mózg i jak on na nie reaguje.

Naukowcy nie zamierzają oczywiście doprowadzać do wypadków osób zakładających zaprojektowaną i zbudowaną przez nich opaskę. Chcą przeprowadzić dużą liczbę badań, licząc na to, że przy okazji uda się zarejestrować także upadki czy zderzenia, które są nieuniknione przy aktywności fizycznej. Do udziału zaprosili więc wolontariuszy uprawiających różne dyscypliny sportu, w tym m.in. studenta naszej uczelni, który jest zawodowym graczem wrocławskiego zespołu futbolu amerykańskiego.

Mamy już sporo danych dotyczących codziennej aktywności ludzi, np. podskakiwania czy biegania, które też są dla nas istotne, bo wiemy już, jak zachowuje się wtedy mózg i jakie naprężenia przez niego przechodzą – opowiada Marek Sawicki, doktorant na Wydziale Mechanicznym i współautor pomysłu.

Naukowcy chcą stworzyć model pokazujący, jak rozchodzą się przyspieszenia w głowie człowieka przy konkretnym uderzeniu. Stąd potrzeba jak największej ilości danych, by model był wiarygodny.

Chcemy zarejestrować dane od osób jeżdżących na rowerze, nartach, snowboardzie itd. Im większe zróżnicowanie, tym lepiej dla naszych badań – dodaje Johannes Wilhelm. Interesujące dla nas mogą być nawet dane z opaski osoby bawiącej się na dużym koncercie, stojącej niedaleko nagłośnienia.

Członkowie zespołu sprawdzali wcześniej prototyp swojego wynalazku na manekinie o rozmiarach dziecka, służącym normalnie do laboratoryjnych badań zderzeniowych. Taką "lalkę" zrzucali z huśtawek i drabinek na placu zabaw, by porównywać zarejestrowane przyspieszenia.

Przy okazji przekonaliśmy się, że zimą zabawa dziecka na placu pokrytym masą bitumiczną nie jest najlepszym pomysłem – opowiada dr hab. Ptak. Pomiary wykonywaliśmy przy temperaturze około 4 st. C. Podłoże, które normalnie służy do absorbowania części energii przy upadku, w takich warunkach jest twarde jak asfalt. Nasza opaska zarejestrowała, że na głowę manekina spadającego na podłoże z granulatu gumowego działało przyspieszenie 100 g, czyli naprawdę bardzo duże i grożące poważnymi konsekwencjami.

W czym pomoże opaska?

Twórcy opaski przekonują, że pozwoli ona nie tylko na dokładne prześledzenie, w jaki sposób dochodzi do uszkodzeń i dysfunkcji w mózgu w wyniku zderzeń i upadków, ale może pomóc np. w pracach nad sprzętem zabezpieczającym głowę (np. testach kasków). Naukowcy są także w kontakcie z neurobiologami z USA, zajmującymi się badaniami związanymi z poprawą pamięci poprzez oddziaływanie elektrodami na mózg. Być może opaska z Wrocławia będzie wykorzystywana również w tych badaniach.

Mogłaby służyć także do monitorowania treningów profesjonalnych sportowców, pomagając w ocenie stanu skupienia i stresu, jakiemu te osoby są poddane w czasie przygotowań do sezonu zawodów swojej dyscypliny.

Na razie zyskała uznanie w konkursie "Student-Wynalazca" organizowanym przez Politechnikę Świętokrzyską – nagrodzono ją wyróżnieniem w 2019 r. Opaska została też zgłoszona do tegorocznej siódmej edycji konkursu "Eureka! DGP. Odkrywamy polskie wynalazki" – jako jedno z 20 naukowych przedsięwzięć z całej Polski. Naukowcy chcą też ją opatentować – obecnie ich rozwiązanie jest na etapie zgłoszenia patentowego.

Wynalazek jest częścią dużego projektu aHEAD  (z ang. advanced Head models for safety Enhancement And medical Development), realizowanego dzięki grantowi "Numeryczny system wielowariantowych modeli głowy człowieka do symulacji patofizjologii urazów czaszkowo-mózgowych" z programu "Lider" Narodowego Centrum Badań i Rozwoju.

Nad opaską pracują: dr hab. inż. Mariusz Ptak (PWr), dr inż. Monika Ratajczak z Uniwersytetu Zielonogórskiego, dr inż. Fabio Fernandez z Uniwersytetu Aveiro w Portugalii, doktoranci Johannes Wilhelm, Marek Sawicki i Maciej Wnuk z Wydziału Mechanicznego PWr oraz neurochirurdzy dr Artur Kwiatkowski (Oddział Neurochirurgiczny Wojewódzkiego Specjalistycznego Szpitala w Legnicy) i Konrad Kubicki (Uniwersytecki Szpital Kliniczny we Wrocławiu – Klinika Neurochirurgii). W pracach informatycznych pomaga student W10 Oliwer Sobolewski.

O projekcie można także przeczytać na jego stronie internetowej.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Podobno psychiatrzy z Gniezna zamawiają leki z miasta założyciela sieci obozów koncentracyjnych zagłady. 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Koreańscy uczeni poinformowali na łamach Occupational & Environmental Medicine, że długie godziny pracy – zdefiniowane tutaj jako praca przez co najmniej 52 godziny w tygodniu – mogą zmieniać strukturę mózgu. Zmiany dotyczą przede wszystkim obszarów powiązanych z regulacją emocji i funkcjami wykonawczymi, jak pamięć robocza i rozwiązywanie problemów. Nadmierna praca powoduje zmiany adaptacyjne w mózgu, które mogą negatywnie wpływać na nasze zdrowie.
      Dostarczamy nowych neurobiologicznych dowodów łączących wydłużony czas pracy ze zmianami strukturalnymi mózgu, podkreślając potrzebę dalszych badań, by zrozumieć długoterminowe skutki poznawcze i emocjonalne przepracowania, czytamy w opublikowanym artykule.
      Nauka zna psychologiczne skutki przepracowania, jednak niewiele wiadomo, w jaki sposób wpływa ono na strukturę mózgu. Już wcześniej pojawiały się sugestie mówiące, że związane z nadmierną pracą chroniczny stres i brak odpoczynku mogą zmieniać budowę mózgu, jednak były one poparte niewielką liczbą dowodów.
      Autorzy najnowszych badań przyjrzeli się 110 ochotnikom. Grupa składała się z lekarzy, pielęgniarek oraz innych pracowników służby zdrowia. Wśród nich były 32 osoby (28%), które pracowały co najmniej 52 godziny w tygodniu.
      Osoby, które spędzały więcej czasu w pracy to zwykle osoby młodsze (przeważnie poniżej 45. roku życie) i lepiej wykształcone, niż osoby pracujące mniej. Różnice w objętości poszczególnych obszarów mózgu oceniano za pomocą badań morfometrycznych opartych o pomiar voksela (VBM). Analizy wykazały istnienie znaczących zmian u osób, które pracowały powyżej 52 godzin tygodniowo. Miały one średnio o 19-procent większą objętość zakrętu czołowego środkowego, który jest zaangażowany w skupienie uwagi, pamięć roboczą i przetwarzanie języka. Powiększonych było też 16 innych regionów, w tym zakręt czołowy górny, odpowiedzialny m.in. za funkcje wykonawcze (podejmowanie decyzji, myślenie abstrakcyjne, planowanie).
      Autorzy badań podkreślają, że badania przeprowadzili na niewielkiej grupie osób i uchwyciły one tylko różnie istniejące w konkretnym momencie. Nie można zatem na ich podstawie wyciągać jednoznacznych wniosków co do skutków i przyczyn. Nie wiadomo, czy zmiany te są skutkiem czy przyczyną przepracowywania się.
      Mimo to badania wskazują na istnienie potencjalnego związku pomiędzy zmianami objętości mózgu a długimi godzinami pracy. Zmiany zaobserwowane u osób przepracowujących się mogą być adaptacją do chronicznego stresu, stwierdzili naukowcy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Słuchając ulubionej muzyki odczuwamy przyjemność, niejednokrotnie wiąże się to z przeżywaniem różnych emocji. Teraz, dzięki pracy naukowców z fińskiego Uniwersytetu w Turku dowiadujemy się, w jaki sposób muzyka na nas działa. Uczeni puszczali ochotnikom ich ulubioną muzykę, badając jednocześnie ich mózgi za pomocą pozytonowej tomografii emisyjnej (PET). Okazało się, że ulubione dźwięki aktywują układ opioidowy mózgu.
      Badania PET wykazały, że w czasie gdy badani słuchali ulubionej muzyki, w licznych częściach mózgu, związanych z odczuwaniem przyjemności, doszło do uwolnienia opioidów. Wzorzec tego uwolnienia powiązano ze zgłaszanym przez uczestników odczuwaniem przyjemności. Dodatkowo za pomocą funkcjonalnego rezonansu magnetycznego (fMRI) skorelowano indywidualną dla każdego z badanych liczbę receptorów opioidowych z aktywacją mózgu. Im więcej receptorów miał mózg danej osoby, tym silniejsze pobudzenie widać było na fMRI.
      Po raz pierwszy bezpośrednio obserwujemy, że słuchanie muzyki uruchamia układ opioidowy mózgu. Uwalnianie opioidów wyjaśnia, dlaczego muzyka powoduje u nas tak silne uczucie przyjemności, mimo że nie jest ona powiązana z zachowaniami niezbędnymi do przetrwania, takimi jak pożywianie się czy uprawianie seksu, mówi Vesa Putkinen. Profesor Luri Nummenmaa dodaje, że układ opioidowy powiązany jest też ze znoszeniem bólu, zatem jego pobudzenie przez muzykę może wyjaśniać, dlaczego słuchanie muzyki może działać przeciwbólowo.
      Receptorem, który zapewnia nam przyjemność ze słuchania muzyki jest μ (MOR). Jego aktywacja powoduje działanie przeciwbólowe – to na niego działają opioidy stosowane w leczeniu bólu, euforię (przez co przyczynia się do uzależnień) czy uspokojenie oraz senność.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Badania przeprowadzone na gryzoniach w średnim wieku wskazują, że brak witaminy K może zwiększać stan zapalny i zakłócać proliferację komórek w hipokampie, części mózgu odpowiedzialnej za pamięć i uczenie się. Wyniki pokazują zatem, w jaki sposób niedobór witaminy K może wpływać na nasze zdolności poznawcze w miarę, jak przybywa nam lat.
      Witamina K obecna jest w zielonych warzywach liściastych, jak brukselka, szpinak, brokuły czy jarmuż. Wiadomo, że odkrywa ważną rolę w krzepnięciu krwi, prawdopodobnie ma też pozytywny wpływ na zdrowie układu krwionośnego i stawy. Teraz dowiadujemy się, że może mieć też wpływ na ludzki mózg.
      Istnieją badania sugerujące, że witamina K chroni mózg przed spadkiem zdolności poznawczych w miarę, jak przybywa nam lat. Nasze prace mają na celu zrozumienie tego mechanizmu, mówi główny autor badań Tong Zheng z Tufts University.
      Naukowcy przez pół roku karmili jedną grupę myszy standardową dietą, a druga grupa otrzymywała dietę ubogą w witaminę K. Naukowcy skupili się na metachinonie-4 (witamina K2 MK-4), związku z grupy witamin K, który występuje w tkance mózgowej. Odkryli, że u myszy karmionych dietą ubogą w witaminę K poziom tego związku był znacząco niższy. A jego niedobór wiązał się z zauważalnym spadkiem zdolności poznawczych zwierząt. Podczas testów takie myszy miały na przykład problem w odróżnieniu nowych obiektów do już znanych, co jest jasną wskazówką problemów z pamięcią. Podczas innego z badań – mających sprawdzić orientację w przestrzeni – myszy miały nauczyć się, gdzie znajduje się ukryta platforma z wodą. Te z niedoborem witaminy K uczyły się znacznie dłużej.
      Badania tkanki mózgowej myszy wykazały istnienie znaczących zmian w hipokampie. U tych, które spożywały zbyt mało witaminy K doszło do zmniejszenia liczby komórek ulegających proliferacji w zakręcie zębatym, co przekładało się na mniej intensywną neurogenezę. Neurogeneza odgrywa kluczową rolę w procesach uczenia się i zapamiętywania, a jej zaburzenie może bezpośrednio wpływać na zaobserwowany spadek zdolności poznawczych, wyjaśnia Zheng. Jakby jeszcze tego było mało, naukowcy znaleźli dowody na zwiększenie się stanu zapalnego w mózgach myszy z niedoborem witaminy K. Odkryliśmy w nich większą liczbę nadaktywnych komórek mikrogleju, dodaje uczony.
      Autorzy badań podkreślają, że ich wyniki nie oznaczają, iż ludzie powinni przyjmować suplementy witaminy K. Ludzie powinni stosować zdrową dietę i jeść warzywa, mówi profesor Sarah Booth. Uczeni z Tufts University współpracują z Rush University Medical Center w Chicago, gdzie zespół Booth prowadzi badania obserwacyjne dotyczące ludzkiego mózgu i zdolności poznawczych. Wiemy z nich, że zdrowa dieta działa, że ludzie, który nie odżywiają się zdrowo, nie żyją tak długo, a ich zdolności poznawcze nie dorównują ludziom ze zdrową dietą. Łącząc badania na ludziach i zwierzętach możemy lepiej poznać mechanimy różnych zjawisk i dowiedzieć się, w jaki sposób długoterminowo poprawić zdrowie mózgu, dodaje uczona.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wystarczy 5 dni nadmiernego spożywania batonów czekoladowych, chipsów i innego śmieciowego jedzenia, by doszło do zmian w aktywności mózgu. Niemieccy naukowcy wykazali, że krótkoterminowe spożywanie słodyczy i tłuszczów uruchamia mechanizm gromadzenia tłuszczu w wątrobie oraz zaburza reakcję mózgu na insulinę, a skutki tego utrzymują się po zaprzestaniu jedzenia wspomnianych pokarmów. Wzorce pracy mózgu po kilku dniach spożywania śmieciowego jedzenia są podobne do tych, widocznych u osób z otyłością. Nie można wykluczyć, że reakcja mózgu na insulinę pozwala mu zaadaptować się do krótkoterminowych zmian diety i ułatwia rozwój otyłości oraz innych chorób.
      Nie spodziewałam się, że skutki będą tak bardzo widoczne u zdrowych ludzi, mówi główna autorka badań, neurolog Stephanie Kullmann. Celem naukowców było zbadanie wpływu krótkoterminowego spożywania wysoce przetworzonych i kalorycznych produktów na reakcję mózgu na insulinę, zanim jeszcze zaczynamy przybierać na wadze.
      Do badań zaangażowano 29 zdrowych mężczyzn w wieku 19–27 lat, których BMI mieściło się w zakresie 19–25 kg/m2 (obecnie przygotowywane są analogiczne badania na kobietach). Podzielono ich na dwie grupy. To jednej, która miała spożywać wysokokaloryczną dietę, przypisano 18 osób. Pozostali stanowili grupę kontrolną. Grupa na diecie wysokokalorycznej miała dziennie spożywać dodatkowo 1500 kcal w postaci chipsów, batonów itp. Aktywność fizyczną ograniczono do 4000 kroków dziennie.
      Początkowo osoby przypisane do grupy spożywającej dodatkowe kalorie zareagowały na to entuzjastycznie. Jednak już w czwartym dniu eksperymentu jedzenie batonów czy chipsów było dla nich męczarnią. W efekcie spożyli oni średnio 1200 kcal dziennie więcej, a nie zakładane 1500 kcal. Mimo to okazało się, że znacząco z 1,55% (± 2,2%) do 2,54% (± 3,5%) zwiększyło się u nich otłuszczenie wątroby. Nie zauważono znaczących różnic w masie działa, zmiany wrażliwości na insulinę w innych tkankach niż mózgu czy wskaźnikach zapalnych.
      Po pięciu dniach u osób z grupy zjadającej słodkie i tłuste przekąski doszło do zmniejszenia czułości układu nagrody. Niekorzystne skutki śmieciowej diety utrzymywały się przez około tydzień po powrocie do diety prawidłowej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Szwedzcy uczeni dokonali czegoś niezwykłego. Połączyli indywidualne komórki z organicznymi elektrodami. Ich osiągnięcie daje nadzieję, że w przyszłości będziemy w stanie bardzo precyzyjnie leczyć choroby neurologiczne. I nie tylko je.
      Mózg jest kontrolowany przez sygnały elektryczne, które są z kolei przekładane na substancje chemiczne służące do komunikacji między komórkami. Nie od dzisiaj wiemy, że mózg można stymulować za pomocą prądu elektrycznego. Jednak stosowane metody są bardzo nieprecyzyjne i wpływają na duże obszary mózgu. W zwiększeniu precyzji pomagają metalowe elektrody. Jednak ich mocowanie do mózgu stwarza ryzyko uszkodzenia tkanki, pojawienia się stanu zapalnego czy blizn. Rozwiązaniem mogą być miękkie polimerowe elektrody.
      Naszym celem jest połączenie układu biologicznego z elektrodami, używając przy tym organicznych polimerów przewodzących. Polimery są miękkie i wygodne w używaniu, mogą przekazywać zarówno sygnał elektryczny, jak i jony. Są więc lepszym materiałem niż konwencjonalne elektrody, mówi Chiara Musumeci z Uniwersytetu w Linköping.
      Uczona wraz z kolegami z Karolinska Institutet opracowała technikę mocowania organicznych elektrod do błon komórkowych pojedynczych komórek. Dotychczas udawało się to osiągnąć w przypadku genetycznie modyfikowanych komórek, zmienionych tak, by ich błony komórkowe łatwiej łączyły się z elektrodami. Szwedzi są pierwszymi, którzy wykonali takie połączenie z niezmodyfikowanymi komórkami, uzyskali ścisłe dopasowanie, a elektroda nie wpłynęła na funkcjonowanie komórek.
      Technika połączenia jest dwuetapowa. W pierwszym kroku wykorzystywana jest molekuła kotwicząca, za pomocą której tworzy się punkt zaczepienia do błony komórkowej. Na drugim końcu molekuły znajduje się struktura, do której mocowana jest następnie elektroda.
      Na kolejnym etapie badań naukowcy będą starali się opracować sposób na bardziej równomierne zaczepianie molekuły kotwiczącej, uzyskanie bardziej stabilnego połączenia oraz zbadanie, jak takie połączenie zachowuje się z upływem czasu. Przed nimi jeszcze sporo wyzwań. Naukowcy wciąż nie są w stanie z całą pewnością stwierdzić, że ich technika sprawdzi się w przypadku żywych tkanek. Na razie skupiają się nad uzyskaniem pewnego, stabilnego i bezpiecznego połączenia z komórką.
      Jeśli okaże się, że takie połączenia sprawdzają się w żywych organizmach, przyjdzie czas na badania, które dadzą odpowiedź na pytanie, w terapiach jakich chorób można będzie zastosować elektrody łączone z poszczególnymi komórkami.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...