Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Na Politechnice Wrocławskiej powstaje opaska monitorująca, co dzieje się w mózgu w czasie urazu

Rekomendowane odpowiedzi

Lekka silikonowa opaska może być zakładana pod kask w czasie uprawiania sportu. Wynalazek mierzy przyspieszenia działające na głowę człowieka i aktywność elektryczną kory mózgowej. Dzięki niemu od razu wiadomo, co dzieje się w mózgu, gdy dochodzi do upadku albo zderzenia.

Nad opaską pracuje zespół naukowców z Wydziału Mechanicznego Politechniki Wrocławskiej i dwaj neurochirurdzy – z Wrocławia i Legnicy. Ich urządzenie składa się z kilkunastu czujników – akcelerometrów (mierzących przyspieszenia działające na głowę) oraz czujników pulsu, temperatury ciała, stopnia natlenienia krwi i kwasowości wydzielanego potu. Są tam także elektrody, dzięki którym możliwa jest elektroencefalografia, czyli EEG – pomiar aktywności elektrycznej kory mózgowej. Wszystkie te dane są zapisywanie na karcie pamięci, a potem przetwarzane przez komputer. Sama opaska jest wykonana z lekkiego i przyjemnego dla skóry silikonu i ma (opcjonalne) paski przechodzące przez środek głowy i wkładki douszne z czujnikami ruchu (IMU).

Nikt do tej pory nie mierzył, co dzieje się z korą mózgową w czasie uderzenia głowy – podkreśla dr hab. inż. Mariusz Ptak z Katedry Konstrukcji Badań Maszyn i Pojazdów na Wydziale Mechanicznym, kierownik projektu. Zwykle gdy dochodzi do poważniejszego wypadku, EEG jest wykonywane kilkadziesiąt minut po takim zdarzeniu w szpitalu. My mamy szansę zobaczyć, jak zmienia się potencjał elektryczny w mózgu w czasie rzeczywistym. Przylegające do skóry elektrody są jednym z najważniejszych elementów naszej opaski. Każdy organizm jest bowiem inny i u niektórych ludzi nawet mały uraz może być przyczyną bardzo poważnych powikłań. Dlatego sam pomiar sił działających na głowę mógłby być niewystarczającym wskaźnikiem dla określenia ryzyka poważnego urazu. EEG pozwala nam bardzo dokładnie przyjrzeć się wszystkiemu, co dzieje się w głowie człowieka.

Badania na zawodniku futbolu amerykańskiego

Do tej pory badania na ludzkim mózgu związane z uderzeniami w czasie rzeczywistym – z oczywistych powodów – prowadzono na ciałach zmarłych.

Nie wiemy natomiast, co dzieje się w mózgu osoby żyjącej. Wyniki mogą być zupełnie inne od tych dostępnych w literaturze, bo przecież wiele parametrów jest skrajnie odmiennych, jak choćby stopień nawodnienia organizmu – tłumaczy Johannes Wilhelm, doktorant na Wydziale Mechanicznym uczestniczący w tym projekcie. Dzięki opasce możemy dowiedzieć się np., co prowadzi do utraty świadomości człowieka. Będziemy mogli przeanalizować, jakie fale przechodzą przez mózg i jak on na nie reaguje.

Naukowcy nie zamierzają oczywiście doprowadzać do wypadków osób zakładających zaprojektowaną i zbudowaną przez nich opaskę. Chcą przeprowadzić dużą liczbę badań, licząc na to, że przy okazji uda się zarejestrować także upadki czy zderzenia, które są nieuniknione przy aktywności fizycznej. Do udziału zaprosili więc wolontariuszy uprawiających różne dyscypliny sportu, w tym m.in. studenta naszej uczelni, który jest zawodowym graczem wrocławskiego zespołu futbolu amerykańskiego.

Mamy już sporo danych dotyczących codziennej aktywności ludzi, np. podskakiwania czy biegania, które też są dla nas istotne, bo wiemy już, jak zachowuje się wtedy mózg i jakie naprężenia przez niego przechodzą – opowiada Marek Sawicki, doktorant na Wydziale Mechanicznym i współautor pomysłu.

Naukowcy chcą stworzyć model pokazujący, jak rozchodzą się przyspieszenia w głowie człowieka przy konkretnym uderzeniu. Stąd potrzeba jak największej ilości danych, by model był wiarygodny.

Chcemy zarejestrować dane od osób jeżdżących na rowerze, nartach, snowboardzie itd. Im większe zróżnicowanie, tym lepiej dla naszych badań – dodaje Johannes Wilhelm. Interesujące dla nas mogą być nawet dane z opaski osoby bawiącej się na dużym koncercie, stojącej niedaleko nagłośnienia.

Członkowie zespołu sprawdzali wcześniej prototyp swojego wynalazku na manekinie o rozmiarach dziecka, służącym normalnie do laboratoryjnych badań zderzeniowych. Taką "lalkę" zrzucali z huśtawek i drabinek na placu zabaw, by porównywać zarejestrowane przyspieszenia.

Przy okazji przekonaliśmy się, że zimą zabawa dziecka na placu pokrytym masą bitumiczną nie jest najlepszym pomysłem – opowiada dr hab. Ptak. Pomiary wykonywaliśmy przy temperaturze około 4 st. C. Podłoże, które normalnie służy do absorbowania części energii przy upadku, w takich warunkach jest twarde jak asfalt. Nasza opaska zarejestrowała, że na głowę manekina spadającego na podłoże z granulatu gumowego działało przyspieszenie 100 g, czyli naprawdę bardzo duże i grożące poważnymi konsekwencjami.

W czym pomoże opaska?

Twórcy opaski przekonują, że pozwoli ona nie tylko na dokładne prześledzenie, w jaki sposób dochodzi do uszkodzeń i dysfunkcji w mózgu w wyniku zderzeń i upadków, ale może pomóc np. w pracach nad sprzętem zabezpieczającym głowę (np. testach kasków). Naukowcy są także w kontakcie z neurobiologami z USA, zajmującymi się badaniami związanymi z poprawą pamięci poprzez oddziaływanie elektrodami na mózg. Być może opaska z Wrocławia będzie wykorzystywana również w tych badaniach.

Mogłaby służyć także do monitorowania treningów profesjonalnych sportowców, pomagając w ocenie stanu skupienia i stresu, jakiemu te osoby są poddane w czasie przygotowań do sezonu zawodów swojej dyscypliny.

Na razie zyskała uznanie w konkursie "Student-Wynalazca" organizowanym przez Politechnikę Świętokrzyską – nagrodzono ją wyróżnieniem w 2019 r. Opaska została też zgłoszona do tegorocznej siódmej edycji konkursu "Eureka! DGP. Odkrywamy polskie wynalazki" – jako jedno z 20 naukowych przedsięwzięć z całej Polski. Naukowcy chcą też ją opatentować – obecnie ich rozwiązanie jest na etapie zgłoszenia patentowego.

Wynalazek jest częścią dużego projektu aHEAD  (z ang. advanced Head models for safety Enhancement And medical Development), realizowanego dzięki grantowi "Numeryczny system wielowariantowych modeli głowy człowieka do symulacji patofizjologii urazów czaszkowo-mózgowych" z programu "Lider" Narodowego Centrum Badań i Rozwoju.

Nad opaską pracują: dr hab. inż. Mariusz Ptak (PWr), dr inż. Monika Ratajczak z Uniwersytetu Zielonogórskiego, dr inż. Fabio Fernandez z Uniwersytetu Aveiro w Portugalii, doktoranci Johannes Wilhelm, Marek Sawicki i Maciej Wnuk z Wydziału Mechanicznego PWr oraz neurochirurdzy dr Artur Kwiatkowski (Oddział Neurochirurgiczny Wojewódzkiego Specjalistycznego Szpitala w Legnicy) i Konrad Kubicki (Uniwersytecki Szpital Kliniczny we Wrocławiu – Klinika Neurochirurgii). W pracach informatycznych pomaga student W10 Oliwer Sobolewski.

O projekcie można także przeczytać na jego stronie internetowej.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Podobno psychiatrzy z Gniezna zamawiają leki z miasta założyciela sieci obozów koncentracyjnych zagłady. 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Szwedzcy uczeni dokonali czegoś niezwykłego. Połączyli indywidualne komórki z organicznymi elektrodami. Ich osiągnięcie daje nadzieję, że w przyszłości będziemy w stanie bardzo precyzyjnie leczyć choroby neurologiczne. I nie tylko je.
      Mózg jest kontrolowany przez sygnały elektryczne, które są z kolei przekładane na substancje chemiczne służące do komunikacji między komórkami. Nie od dzisiaj wiemy, że mózg można stymulować za pomocą prądu elektrycznego. Jednak stosowane metody są bardzo nieprecyzyjne i wpływają na duże obszary mózgu. W zwiększeniu precyzji pomagają metalowe elektrody. Jednak ich mocowanie do mózgu stwarza ryzyko uszkodzenia tkanki, pojawienia się stanu zapalnego czy blizn. Rozwiązaniem mogą być miękkie polimerowe elektrody.
      Naszym celem jest połączenie układu biologicznego z elektrodami, używając przy tym organicznych polimerów przewodzących. Polimery są miękkie i wygodne w używaniu, mogą przekazywać zarówno sygnał elektryczny, jak i jony. Są więc lepszym materiałem niż konwencjonalne elektrody, mówi Chiara Musumeci z Uniwersytetu w Linköping.
      Uczona wraz z kolegami z Karolinska Institutet opracowała technikę mocowania organicznych elektrod do błon komórkowych pojedynczych komórek. Dotychczas udawało się to osiągnąć w przypadku genetycznie modyfikowanych komórek, zmienionych tak, by ich błony komórkowe łatwiej łączyły się z elektrodami. Szwedzi są pierwszymi, którzy wykonali takie połączenie z niezmodyfikowanymi komórkami, uzyskali ścisłe dopasowanie, a elektroda nie wpłynęła na funkcjonowanie komórek.
      Technika połączenia jest dwuetapowa. W pierwszym kroku wykorzystywana jest molekuła kotwicząca, za pomocą której tworzy się punkt zaczepienia do błony komórkowej. Na drugim końcu molekuły znajduje się struktura, do której mocowana jest następnie elektroda.
      Na kolejnym etapie badań naukowcy będą starali się opracować sposób na bardziej równomierne zaczepianie molekuły kotwiczącej, uzyskanie bardziej stabilnego połączenia oraz zbadanie, jak takie połączenie zachowuje się z upływem czasu. Przed nimi jeszcze sporo wyzwań. Naukowcy wciąż nie są w stanie z całą pewnością stwierdzić, że ich technika sprawdzi się w przypadku żywych tkanek. Na razie skupiają się nad uzyskaniem pewnego, stabilnego i bezpiecznego połączenia z komórką.
      Jeśli okaże się, że takie połączenia sprawdzają się w żywych organizmach, przyjdzie czas na badania, które dadzą odpowiedź na pytanie, w terapiach jakich chorób można będzie zastosować elektrody łączone z poszczególnymi komórkami.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przenoszony przez komary wirus Zika powoduje infekcje w obu Amerykach, Afryce i Azji, a świat szerzej o nim usłyszał przed 10 laty, gdy wywołał epidemię w Ameryce Południowej. Zwykle Zika nie daje objawów lub przypominają one lekkie przeziębienie. W bardzo rzadkich przypadkach dochodzi do pojawienia się zespołu Guillaina-Barrégo. Dlatego też głównym zagrożeniem wiążącym się z infekcją jest zarażenie ciężarnej kobiety. Zika powoduje bowiem małogłowie u dzieci zarażonych matek.
      Naukowcy z uniwersytetów w Kalifornii, Nowym Jorku i Nevadzie właśnie odkryli mechanizm wywoływania małogłowia u noworodków przez Zikę.
      W artykule Microcephaly protein ANKLE2 promotes Zika virus replication donoszą, że Zika przejmuje proteinę ANKLE2, która jest niezbędna do prawidłowego rozwoju mózgu, i wykorzystuje ją podczas replikacji. Również spokrewnione z Ziką wirusy, jak wirus dengi i wirus żółtej gorączki, również korzystają z ANKLE2. Jednak Zika, w przeciwieństwie do większości spokrewnionych z nim wirusów, jest w stanie przedostać się do łożyska. A to ma katastrofalne skutki dla rozwijającego się dziecka. W przypadku Ziki mamy do czynienia z wirusem, który dostaje się w złe miejsce, w złym czasie, mówi doktor Priya Shah z Uniwersytetu Kalifornijskiego w Davis.
      Zika należy do rodzaju ortoflawiwirusów. Posiadają one jednoniciowe RNA i, podobnie jak inne wirusy, niosą ze sobą ograniczony zestaw instrukcji we własnym kodzie genetycznym. By się replikować, muszą skorzystać z materiału dostępnego w zarażonej komórce gospodarza. Już wcześniej autorzy obecnych badań zauważyli, że wchodząca w skład wirusa proteina NS4A wchodzi w interakcje z ANKLE2 w zarażonych komórkach. ANKLE2 jest zaangażowana w rozwój mózgu u płodu, ale występuje w komórkach całego ciała.
      Podczas najnowszych badan uczeni wykazali, że usunięcie z komórek genu kodującego ANKLE2 zmniejsza zdolność wirusa do namnażania się. Stwierdzili też, że w wyniku interakcji NS4A z ANLKE2 proteina ANKLE2 gromadzi się wokół siateczki śródplazmatycznej zarażonych komórek, tworząc „kieszonkę”, w której replikacja wirusa jest znacznie bardziej efektywna. Ponadto „kieszonka” ukrywa patogen przed układem odpornościowym. Nasz organizm potrafi efektywnie zwalczać wirusy, pod warunkiem jednak, że jest w stanie je znaleźć. Zika i spokrewnione wirusy wyewoluowały efektywne strategie pozwalające ukryć im się w tych „kieszonkach”, by uniknąć wykrycia, stwierdzają autorzy badań. Bez kieszonek wirusy są narażone na atak ze strony układu odpornościowego, który dobrze sobie radzi z utrzymywaniem ich pod kontrolą.
      Co więcej, okazało się, że wirus przechwytuje też proteinę ANKLE2 u komarów, co oznacza, że odgrywa ona dla niego ważną rolę, zarówno u gospodarzy ludzkich, jak i zwierzęcych. Uczeni wykazali też, że do interakcji NS4A i ANKLE2 dochodzi również w przypadku innych wirusów przenoszonych przez komary. To zaś sugeruje, że interakcja ta odgrywa duża rolę w rozprzestrzenianiu się wielu chorób, zatem jej mechanizm można wziąć na cel opracowując nowe leki i szczepionki.
      Wirus Zika jest jednak o tyle unikatowy, że przenika do łożyska i powoduje nieodwracalne szkody u płodu.  Większość innych wirusów nie ma, na szczęście, takich możliwości.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Badacze z MIT, University of Cambridge i McGill University skanowali mózgi ludzi oglądających filmy i dzięki temu stworzyli najbardziej kompletną mapę funkcjonowania kory mózgowej. Za pomocą funkcjonalnego rezonansu magnetycznego (fMRI) naukowcy zidentyfikowali w naszej korze mózgowej 24 sieci połączeń, które pełnią różne funkcje, jak przetwarzanie języka, interakcje społeczne czy przetwarzanie sygnałów wizualnych.
      Wiele z tych sieci było znanych wcześniej, jednak dotychczas nie zbadano ich działania w warunkach naturalnych. Wcześniejsze badania polegały bowiem na obserwowaniu tych sieci podczas wypełniania konkretnych zadań lub podczas odpoczynku. Teraz uczeni sprawdzali ich działanie podczas oglądania filmów, byli więc w stanie sprawdzić, jak reagują na różnego rodzaju sceny. W neuronauce coraz częściej bada się mózg w naturalnym środowisku. To inne podejście, które dostarcz nam nowych informacji w porównaniu z konwencjonalnymi metodami badawczymi, mówi Robert Desimone, dyrektor McGovern Institute for Brain Research na MIT.
      Dotychczas zidentyfikowane sieci w mózgu badano podczas wykonywania takich zadań jak na przykład oglądanie fotografii twarzy czy też podczas odpoczynku, gdy badani mogli swobodnie błądzić myślami. Teraz naukowcy postanowili przyjrzeć się mózgowi w czasie bardziej naturalnych zadań: oglądania filmów.
      Wykorzystując do stymulacji mózgu tak bogate środowisko jak film, możemy bardzo efektywnie badań wiele obszarów kory mózgowej. Różne regiony będą różnie reagowały na różne elementy filmu, jeszcze inne obszary będą aktywne podczas przetwarzania informacji dźwiękowych, inne w czasie oceniania kontekstu. Aktywując mózg w ten sposób możemy odróżnić od siebie różne obszary lub różne sieci w oparciu o ich wzorce aktywacji, wyjaśnia badacz Reza Rajimehr.
      Bo badań zaangażowano 176 osób, z których każda oglądała przez godzinę klipy filmowe z różnymi scenami. W tym czasie ich mózgi były skanowane aparatem do rezonansu magnetycznego, generującym pole magnetyczne o indukcji 7 tesli. To zapewnia znacznie lepszy obraz niż najlepsze komercyjnie dostępne aparaty MRI. Następnie za pomocą algorytmów maszynowego uczenia analizowano uzyskane dane. Dzięki temu zidentyfikowali 24 różne sieci o różnych wzorcach aktywności i zadaniach.
      Różne regiony mózgu konkurują ze sobą o przetwarzanie specyficznych zadań, gdy więc mapuje się je z osobna, otrzymujemy nieco większe sieci, gdyż ich działanie nie jest ograniczone przez inne. My przeanalizowaliśmy wszystkie te sieci jednocześnie podczas pracy, co pozwoliło na bardziej precyzyjne określenie granic każdej z nich, dodaje Rajimehr.
      Badacze opisali też sieci, których wcześniej nikt nie zauważył. Jedna z nich znajduje się w korze przedczołowej i wydaje się bardzo silnie reagować na bodźce wizualne. Sieć ta była najbardziej aktywna podczas przetwarzania scen z poszczególnych klatek filmu. Trzy inne sieci zaangażowane były w „kontrolę wykonawczą” i były najbardziej aktywne w czasie przechodzenia pomiędzy różnymi klipami. Naukowcy zauważyli też, że były one powiązane z sieciami przetwarzającymi konkretne cechy filmów, takie jak twarze czy działanie. Gdy zaś taka powiązana sieć, odpowiedzialna za daną cechę, była bardzo aktywna, sieci „kontroli wykonawczej” wyciszały się i vice versa. Gdy dochodzi do silnej aktywacji sieci odpowiedzialnej za specyficzny obszar, wydaje się, że te sieci wyższego poziomu zostają wyciszone. Ale w sytuacjach niepewności czy dużej złożoności bodźca, sieci te zostają zaangażowane i obserwujemy ich wysoką aktywność, wyjaśniają naukowcy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Neurolog Carina Heller poddała się w ciągu roku 75 badaniom rezonansem magnetycznym, by zebrać dane na temat wpływu pigułek antykoncepcyjnych na mózg. Pierwszą pigułkę antykoncepcyjną dopuszczono do użycia w USA w 1960 roku i już po dwóch latach przyjmowało ją 1,2 miliona Amerykanek. Obecnie z pigułek korzysta – z różnych powodów – około 150 milionów kobiet na całym świecie, co czyni je jednymi z najczęściej używanych leków. I chociaż generalnie są one bezpiecznie, ich wpływ na mózg jest słabo poznany.
      Dlatego też Heller postanowiła sprawdzić to na sobie. Zwykle bowiem eksperymentalne obrazowanie mózgu z wykorzystaniem MRI prowadzone jest na niewielkich grupach, a każda osoba poddawana jest badaniu raz lub dwa razy. Takim badaniom umykają codzienne zmiany w działaniu czy morfologii mózgu.
      Pani Heller najpierw pozwoliła przeskanować swój mózg 25 razy w ciągu 5 tygodni. Rejestrowano wówczas zmiany zachodzące podczas jej naturalnego cyklu. Klika miesięcy później zaczęła brać pigułki antykoncepcyjne i po trzech miesiącach poddała się kolejnym 25 skanom w ciągu 5 tygodni. Wkrótce po tym przestała brać pigułki, odczekała 3 miesiąca i została poddana ostatnim 25 skanom w 5 tygodni. Po każdym skanowaniu pobierano jej też krew do badań oraz wypełniała kwestionariusz dotyczący nastroju.
      Heller zaprezentowała wstępne wyniki swoich badań podczas dorocznej konferencji Towarzystwa Neuronauk. Uczona zauważyła, że w trakcie naturalnego cyklu dochodzi do regularnych zmian w objętości mózgu i liczbie połączeń pomiędzy różnymi regionami. W czasie brania pigułek objętość mózgu była nieco mniejsza, podobnie jak liczba połączeń. Po odstawieniu pigułek jej mózg w większości powrócił do naturalnego cyklu zmian.
      Uczona planuje też porównać wyniki swoich badań MRI z wynikami badań kobiety z endometriozą, niezwykle bolesną, niszczącą organizm i życie chorobą, która jest jedną z głównych przyczyn kobiecej niepłodności. Uczona chce sprawdzić, czy zmiany poziomu hormonów w mózgu mogą mieć wpływ na rozwój choroby.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Choroba Alzheimera niszczy mózg w dwóch etapach, ogłosili badacze z amerykańskich Narodowych Instytutów Zdrowia. Ich zdaniem pierwszy etap przebiega powoli i niezauważenie, zanim jeszcze pojawią się problemy z pamięcią. Wówczas dochodzi do uszkodzeń tylko kilku typów wrażliwych komórek. Etap drugi jest znacznie bardziej niszczący i w nim dochodzi do pojawienia się objawów choroby, szybkiej akumulacji blaszek amyloidowych, splątków i innych cech charakterystycznych alzheimera.
      Jednym z problemów związanych z diagnozowaniem i leczeniem choroby Alzheimera jest fakt, że do znacznej części szkód dochodzi na długo zanim pojawią się objawy. Możliwość wykrycia tych szkód oznacza, że po raz pierwszy możemy obserwować to, co dzieje się w mózgu chorej osoby na najwcześniejszych etapach choroby. Uzyskane przez nas wyniki w znaczący sposób zmienią rozumienie, w jaki sposób choroba uszkadza mózg i ułatwią opracowanie nowych metod leczenia, mówi doktor Richar J. Hodes, dyrektor Narodowego Instytutu Starzenia Się.
      Badacze przeanalizowali mózgu 84 osób i stwierdzili, że uszkodzenie na wczesnym etapie choroby neuronów hamujących może być tym czynnikiem, który wyzwala całą kaskadę reakcji prowadzących do choroby.
      Badania potwierdziły też wcześniejsze spostrzeżenia dotyczące alzheimera. Naukowcy wykorzystali zaawansowane narzędzia do analizy genetycznej, by bliżej przyjrzeć się komórkom w zakręcie skroniowym środkowym, gdzie znajdują się ośrodki odpowiedzialne za pamięć, język i widzenie. Obszar ten jest bardzo wrażliwy na zmiany zachodzące w chorobie Alzheimera.
      Porównując dane z analizowanych mózgów z danymi z mózgów osób, które cierpiały na alzheimera, naukowcy byli w stanie odtworzyć linię czasu zmian zachodzących w komórkach i genach w miarę rozwoju choroby.
      Wcześniejsze badania sugerowały, że do uszkodzeń dochodzi z kilkunastu etapach charakteryzujących się coraz większą liczbą umierających komórek, zwiększającym się stanem zapalnym i akumulacją białka w postaci blaszek amyloidowych i splątków. Z nowych badań wynika, że występują jedynie dwa etapy, a do wielu uszkodzeń dochodzi w drugim z nich i to wówczas pojawiają się widoczne objawy.
      W pierwszej, wolno przebiegającej ukrytej fazie, powoli gromadzą się blaszki, dochodzi do aktywowania układu odpornościowego mózgu, osłonki mielinowej oraz śmierci hamujących neuronów somatostatynowych. To ostatnie odkrycie jest zaskakujące. Dotychczas uważano bowiem, że szkody w alzheimerze są powodowane głównie poprzez uszkodzenia neuronów pobudzających, które aktywują komórki, a nie je uspokajają. W opublikowanym na łamach Nature artykule możemy zapoznać się z hipotezą opisującą, w jaki sposób śmierć neuronów somatostatynowych może przyczyniać się do rozwoju choroby.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...