Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Najszybszy polski superkomputer, Prometheus, pomaga w poszukiwaniu leku na COVID-19
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Najdłuższa i najbardziej szczegółowa w historii symulacja połączenia się dwóch gwiazd neutronowych pokazuje, jak powstają czarne dziury i rodzą się dżety. Autorami symulacji są członkowie międzynarodowego zespołu badawczego, na czele którego stali naukowcy z Instytutu Fizyki Grawitacyjnej im. Maxa Plancka. Jej stworzenie wymagało 130 milionów godzin pracy procesorów, a symulacja – tak szczegółowo, jak to możliwe – obrazuje to, co dzieje się w ciągu... 1,5 sekundy.
Łączące się gwiazdy neutronowe są dla astronomów niezwykle interesującym celem badań. W procesie tym dochodzi do emisji fal grawitacyjnych, neutrin i fal elektromagnetycznych.
Podczas jej przygotowywania twórcy symulacji wzięli pod uwagę zjawiska opisane w ogólnej teorii względności, oddziaływanie strumieni neutrin czy magnetohydrodynamikę. Wszystkie je możemy rejestrować i badać, pogłębiając naszą wiedzę o kosmosie.
A dzięki symulacjom komputerowym możemy lepiej zrozumieć pochodzenie i powstawanie tych sygnałów.
Uczeni wykorzystali do symulacji japoński superkomputer Fugaku, który w latach 2020–2022 był najpotężniejszym superkomputerem na świecie. W każdym momencie tworzenia symulacji jednocześnie pracowało od 20 do 80 tysięcy procesorów. Dzięki tak potężnej mocy obliczeniowej możliwe było uwzględnienie zjawisk opisanych przez ogólną teorię względności, emisji neutrin czy zjawisk magnetohydrodynamicznych.
Symulacja opisuje dwie gwiazdy neutronowe, o masie 1,25 i 1,65 razy większej od masy Słońca, które okrążają się 5-krotnie. Wówczas pojawiają się pierwsze sygnały, które potrafimy badań na Ziemi, czyli fale grawitacyjne. Następnie dochodzi do połączenia gwiazd, w wyniku czego powstaje czarna dziura otoczona dyskiem materiału. W dysku, w wyniku efektu dynama magnetohydrodynamicznego i obrotu czarnej dziury, dochodzi do szybkiego wzmocnienia pola magnetycznego. To powoduje odpływ energii wzdłuż osi obrotu czarnej dziury.
Sądzimy, że to ten odpływ energii napędzany przez pole magnetyczne, zasila rozbłyski gamma. To by się zgadzało z tym, co wiemy z dotychczasowych obserwacji i wzbogaca naszą wiedzę o zjawiskach zachodzących podczas łączenia się gwiazd neutronowych, stwierdził Masaru Shibata, dyrektor wydziału Obliczeniowej Astrofizyki Relatywistycznej. Dalsza część symulacji pokazała spodziewaną emisję neutrin, dostarczyła informacji na temat ilości materii wyrzucanej w przestrzeń międzygwiezdną oraz wskazała na możliwość pojawienia się kilonowej, w wyniku której wytwarzane są wielkie ilości metali ciężkich.
To, czego się właśnie dowiedzieliśmy o tworzeniu się dżetów i dynamice pola magnetycznego jest kluczowe do zinterpretowania i zrozumienia łączenia się gwiazd neutronowych oraz towarzyszących temu zjawisk, dodaje Shibata.
Źródło: Jet from Binary Neutron Star Merger with Prompt Black Hole Formation
« powrót do artykułu -
przez KopalniaWiedzy.pl
Prezydent Trump nie ustaje w wysiłkach na rzecz ograniczenia finansowania nauki. Wcześniej informowaliśmy o propozycji obcięcia budżetu NASA na naukę. Tym razem na celowniku jego administracji znalazł się superkomputer Horizon. Mimo, że prezydent twierdzi, że utrzymanie dominacji USA na rynku najbardziej wydajnych maszyn obliczeniowych jest jego priorytetem, działania Białego Domu mogą opóźnić lub całkowicie zniweczyć plany budowy maszyny Horizon, która ma stanąć na University of Texas w Austin.
Stany Zjednoczone dominują na rynku superkomputerów. To w tym kraju tradycyjnie już znajduje się największa liczba spośród 500 najbardziej wydajnych maszyn świata. Jednak dominacja ta jest coraz mniejsza. Obecnie na liście TOP500 superkomputerów znajdują się 173 maszyny z USA – w tym 5 z 10 najpotężniejszych – a przed 10 laty w USA stały 232 takie maszyny.
Horizon ma być najpotężniejszym superkomputerem na amerykańskiej uczelni wyższej. Obecnie miano takiej maszyny należy do superkomputera Frontera, również znajdującego się na University of Texas. Maksymalna moc obliczeniowa Frontery to 23,52 Pflops (Pflops to 1015 operacji zmiennoprzecinkowych na sekundę), teoretyczna szczytowa wydajność tej maszyny to 38,75 Pflops. Frontera znajduje się obecnie na 52. miejscu na liście TOP500. W chwili powstania był 5. najbardziej wydajnym superkomputerem na świecie. Dla porównania, najpotężniejszy polski superkomputer Helios GPU, z maksymalną mocą obliczeniową 19,14 Pflops zajmuje obecnie 69. pozycję.
Horizon, którego koszt ma wynieść 520 milionów dolarów, będzie 10-krotnie bardziej wydajny od Frontery. Znalazłby się na 10. miejscu obecnej listy. Obecnie jednak nie wiadomo czy i kiedy powstanie. Wszystko przez działania Białego Domu, który chce uniemożliwić Narodowej Fundacji Nauki (NFC) wydatkowanie 234 milionów dolarów, jakie Kongres przyznał jej w ubiegłym miesiącu na program Major Research Equipment and Facilities Construction (MREFC). Zdecydowana większość tej kwoty – 154 miliony USD – miało zostać przeznaczone na budowę Horizona, a resztę NFC ma zamiar wydać na wieloletni program unowocześniania stacji antarktycznej McMurdo i niewielką infrastrukturę naukową w kraju.
Pieniądze przyznane na MFERC to część znacznie większej kwoty 1,9 biliona USD zatwierdzonej w marcu jako awaryjne wydatki w celu uniknięcia przerw w pracy w wyniku możliwego zamknięcia rządu federalnego.
Prezydent Trump sprzeciwił się takim działaniom i zapowiedział, że wstrzyma wydatkowanie 2,9 miliarda USD, w tym właśnie 234 milionów dolarów dla Narodowej Fundacji Nauki. Stwierdził bowiem, że nie są to wydatki awaryjne. Prawdopodobnie takie działanie byłoby nielegalne, gdyż zgodnie z prawem prezydent może albo wstrzymać całość wydatków (1,9 biliona), albo żadnego.
Jeśli jednak Trump dopnie swego, budowa Horizona może co najmniej poważnie się opóźnić. Texas Advanced Computing Center (TACC) ma fundusze wystarczające na prace nad superkomputerem przez 3–4 miesiące. W zbudowanie i oprogramowanie komputera zaangażowanych jest 80 specjalistów z TACC oraz prywatne firmy.
Naukowcy z niecierpliwością czekają na nowy superkomputer. Pozwoli on na symulowanie zarówno ewolucji galaktyk, jak i rozprzestrzeniania się wirusów w aerozolach. Mikrobiolodzy mówią, że zastosowanie Horizona w połączeniu z algorytmami sztucznej inteligencji sprawi, że obliczenia związane z wirusami będą 100-krotnie bardziej wydajne, niż obliczenia prowadzone na Fronterze.
Uruchomienie Horizona planowane jest na połowę przyszłego roku. Frontera używa technologii z 2019 roku. Starzeje się i nie możemy go już dłużej używać, stwierdzają naukowcy. Już samo opóźnienie prac nad Horizonem to poważny problem. Może to bowiem oznaczać unieważnienie umowy pomiędzy TACC a Nvidią na dostarczenie tysięcy zaawansowanych procesorów graficznych. W związku z rozwojem sztucznej inteligencji zapotrzebowanie na takie układy jest ogromne, więc nie wiadomo, kiedy znowu Nvidia mogłaby dostarczyć tylu układów, ile potrzebuje Horizon.
Zatrzymanie prac nad superkomputerem oznaczałoby też zmarnowanie 100 milionów USD, które dotychczas wydano na maszynę.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W Akademickim Centrum Komputerowym Cyfronet AGH oficjalnie uruchomiono najpotężniejszy superkomputer w Polsce. Uroczyste uruchomienie Atheny, bo tak nazwano maszynę, towarzyszyło inauguracji roku akademickiego. Maszyna dołączyła do innych superkomputerów z Cyfronetu – Zeusa, Prometeusza i Aresa.
Maksymalna teoretyczna wydajność nowego superkomputera wynosi 7,71 PFlop/s, a maksymalna wydajność zmierzona testem Linpack osięgnęła 5,05 PFlop/s, co dało Athenie 105. pozycję na liście 500 najpotężniejszych superkomputerów na świecie. Polski superkomputer jest jedną z najbardziej ekologicznych maszy na świecie. Na liście Green500 zajął niezwykle wysoką, 9. pozycję. Do pracy potrzebuje bowiem 147 kW, zatem osiąga imponującą wydajność 29,9 GFlops/wat.
Athena zbudowana jest z 48 serwerów. W skład każdego z nich wchodzą dwa 64-rdzeniowe procesory AMD EPYC oraz 8 kart GPGPU NVIDIA A100. Do wymiany danych pomiędzy serwerami służy wydajna infrastruktura wewnętrzna o przepustowości 4 x 200 Gb/s na serwer.
Na liście TOP500 znajdziemy w sumie 5 polskich superkomputerów, z czego 3 z Cyfronetu. Obok Atheny są to Ares (290. pozycja, 2,34 PFlop/s) oraz Prometheus (475. pozycja, 1,67 PFlop/s).
Nasze superkomputery są bardzo potrzebne polskiej nauce i innowacyjnej gospodarce. Czasem jestem pytany, dlaczego nie wystarczy jeden superkomputer? Odpowiedź jest bardzo prosta: po pierwsze są ogromne potrzeby użytkowników, po drugie każdy z superkomputerów ma swoją specyfikę, wynikającą z jego architektury, zainstalowanych procesorów i architektury pamięci operacyjnej. Uruchamiana dziś uroczyście Athena swoją wielką moc obliczeniową osiąga dzięki procesorom graficznym GP GPU. Są to bardzo nowoczesne i bardzo wydajne procesory graficzne Ampere A100 SXM3 firmy Nvidia. Architektura Atheny przeznaczona jest przede wszystkim dla obliczeń metodami sztucznej inteligencji oraz dla potrzeb medycyny, w tym walki z pandemią COVID-19, mówi dyrektor Akademickiego Centrum Komputerowego Cyfronet AGH prof. Kazimierz Wiatr. Uczony dodaje, że w ubiegłym roku maszyny te wykonały ponad 5,5 miliona zadań obliczeniowych na potrzeby polskiej nauki.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Od początku pandemii COVID-19 możemy oglądać w mediach zdjęcia i grafiki reprezentujące koronawirusa SARS-CoV-2. Wyobrażamy go sobie jako sferę z wystającymi białkami S. Obraz ten nie jest do końca prawdziwy, gdyż w rzeczywistości wirion – cząstka wirusowa zdolna do przetrwania poza komórką i zakażania – jest elipsoidą, która może przyjmować wiele różnych kształtów. Z rzadka jest to kształt kulisty.
Teraz naukowcy z kanadyjskiego Queen's University oraz japońskiego Okinawa Institute of Science and Technology (OIST) przeprowadzili modelowanie komputerowe, podczas którego zbadali, jak różne kształty wirionów wpływają na zdolność SARS-CoV-2 do infekowania komórek.
Naukowcy sprawdzali, jak wiriony o różnych kształtach przemieszczają się w płynie, gdyż to właśnie wpływa na łatwość transmisji. Gdy wirion trafi do naszych dróg oddechowych, przemieszcza się w nosie i płucach. Chcieliśmy zbadać jego mobilność w tych środowiskach, mówi profesor Eliot Fried z OIST.
Uczeni modelowali dyfuzję rotacyjną, która określa, z jaką prędkością cząstki obracają się wokół osi prostopadłej do powierzchni błony. Cząstki bardziej gładkie i bardziej hydrodynamiczne napotykają mniejszy opór i obracają się szybciej. W przypadku koronawirusa prędkość obrotu wpływa na zdolność do przyłączenia się do komórki i jej zainfekowania. Jeśli cząstka obraca się zbyt szybko, może mieć zbyt mało czasu na interakcję z komórką i jej zarażenie. Gdy zaś obraca się zbyt wolno, może nie być w stanie przeprowadzić interakcji w odpowiedni sposób, wyjaśnia profesor Fried.
Uczeni modelowali elipsoidy spłaszczone i wydłużone. Sfera to rodzaj elipsoidy obrotowej, która ma wszystkie trzy półosie równe. Elipsoida spłaszczona ma jedną oś krótszą od dwóch pozostałych, elipsoida wydłużona – jedną oś dłuższą od dwóch pozostałych. Możemy sobie to wyobrazić przyjmując, że elipsoida spłaszczona, to kula, która zmienia kształt tak, by stać się monetą, a elipsoida wydłużona to kula, która próbuje stać się prętem. Oczywiście w przypadku wirionów zmiany są bardzo subtelne. Aby uzyskać większy realizm, naukowcy dodali do swoich elipsoid wystające białka S, symbolizowane przez kule na powierzchni elipsoidy.
Przyjęliśmy też założenie, że każde z białek S ma ten sam ładunek elektryczny, przez co odpychają się od siebie, to zaś powoduje, że są równomiernie rozłożone na całej powierzchni elipsoidy, dodaje doktor Vikash Chaurasia z OIST.
Analizy wykazały, że im bardziej kształt wirionu odbiega od kształtu kuli, tym wolniej się on obraca. To może oznaczać, że łatwiej mu będzie przyłączyć się do komórki i ją zarazić. Autorzy badań przyznają, że ich model jest uproszczony, jednak pozwala nam lepiej zrozumieć właściwości koronawirua i jedne z czynników wpływających na łatwość, z jaką nas zaraża.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Tajlandii opisali przypadek weterynarza, który zaraził się COVID-19 od swojego pacjenta. Tym samym dostarczyli pierwszego dowodu, że kot przekazał człowiekowi SARS-CoV-2. Zaznaczają przy tym, że tego typu przypadki są prawdopodobnie niezwykle rzadkie.
Eksperci mówią, że przypadek jest bardzo dobrze udokumentowany. Są jednocześnie zdziwieni, że zdobycie dowodu trwało tak długo. Biorąc pod uwagę rozmiary pandemii, zdolność SARS-CoV-2 do przeskakiwania pomiędzy gatunkami oraz bliskie kontakty ludzi z kotami można było przypuszczać, że znacznie szybciej naukowcy znajdą przykład transmisji pomiędzy ludźmi a ich domowymi pupilami.
Badania przeprowadzone już na początku pandemii wykazały, że koty mogą rozprzestrzeniać wirusa i zarażać inne koty. Z czasem zaczęły napływać raporty, w których przedstawiciele poszczególnych krajów informowali o dziesiątkach zarażonych kotów. Jednak udowodnienie, że kot zaraził człowieka lub człowiek kota jest trudne. Dlatego też Marion Koopmans, wirolog z Uniwersytetu Erazma w Rotterdamie mówi, że badania z Tajlandii to interesujące studium przypadku i dobry przykład tego, jak powinno wyglądać śledzenie drogi rozprzestrzeniania się wirusa.
Dowód, że kot zaraził człowieka zdobyto w dość przypadkowy sposób. W sierpniu ubiegłego roku do jednego ze szpitali przyjęto ojca i syna, u których test wykazał obecność SARS-CoV-2. Zbadano też ich kota. Podczas pobierania próbek od zwierzęcia, kot kichnął w twarz pani weterynarz. Miała ona co prawda maseczkę oraz rękawiczki, ale oczy nie były chronione. Trzy dni później u weterynarz pojawiły się objawy COVID-19. Potwierdzono u niej infekcję. Tymczasem nikt z jej bliskich kontaktów nie był zarażony. Przeprowadzono więc badania genetyczne wirusa obecnego u weterynarz i u kota, który na nią kichnął. Sekwencja RNA była identyczna. Specjaliści podkreślają, że do zarażenia ludzi przez koty dochodzi prawdopodobnie rzadko. Koty rozprzestrzeniają niewiele wirionów i robią to tylko przez kilka dni.
Naukowcy dodają, że przypadki przekazania SARS-CoV-2 ludziom przez zwierzęta są niezwykle rzadkie i nie odgrywają żadnej roli w rozprzestrzenianiu się pandemii. Ludzie są największym źródłem wirusa.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.