
Na Antarktydzie znaleziono pozostałości po lesie deszczowym
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Jony wystrzeliwane podczas rozbłysków słonecznych są 6,5-krotnie cieplejsze niż dotychczas sądzono, donoszą naukowcy z Wielkiej Brytanii i USA. Ich odkrycie stanowi jednocześnie rozwiązanie zagadki, która od lat 70. XX wieku trapiła specjalistów zajmujących się badaniem naszej gwiazdy. Wówczas zauważono, że linie spektralne promieniowania słonecznego są szersze niż spodziewane w zakresie ekstremalnego ultrafioletu i promieniowania rentgenowskiego. Przez 50 lat uważano, że ma to związek z turbulencjami, jednak nikt nie potrafił zidentyfikować natury tych turbulencji, co stawiało całą hipotezę pod znakiem zapytania.
Rozbłyski słoneczne to skutek gwałtownego uwolnienia energii z zewnętrznych warstw atmosfery Słońca, w wyniku której jej fragmenty są podgrzewane do temperatury ponad 10 milionów stopni Celsjusza. Badanie tych wydarzeń ma jak najbardziej praktyczny wymiar. Gwałtowne skoki promieniowania związane z rozbłyskami zagrażają satelitom, astronautom, zaburzają górne warstwy atmosfery Ziemi.
Badacze chcieli poznać mechanizm, za pomocą którego rozbłyski podgrzewają plazmę – złożoną z jonów i elektronów – do ponad 10 milionów stopni Celsjusza. W trakcie swych badań zauważyli, że jony, stanowiące nawet połowę plazmy, są podgrzewane znacznie silniej niż elektrony. Okazało się, że ich temperatura sięga 60 milionów stopni Celsjusza.
Jesteśmy niezwykle podekscytowani spostrzeżeniem, że w wyniku rekoneksji magnetycznej jony osiągają 6,5-krotnie wyższą temperaturę niż elektrony. Wydaje się to uniwersalną zasadą, którą potwierdza to, co dzieje się w pobliżu Ziemi, badania wiatru słonecznego i symulacje komputerowe. Dotychczas jednak nikt nie łączył tego z rozbłyskami słonecznymi. Przyjmowano, że jony i elektrony muszą mieć tę samą temperaturę. Jednak gdy obliczyliśmy wszystko ponownie, korzystając z nowych danych, okazało się, że w wielu istotnych fragmentach rozbłysków słonecznych różnice temperatur pomiędzy jonami i elektronami mogą utrzymywać się przez dziesiątki minut, mówi główny autor badań, doktor Alexander Russell z University of St Andrews.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Pobili rekord temperatury, obalili teorię o katastrofie entropii i wykorzystali nowy metodę spektroskopii laserowej do badania gęstej plazmy – a to wszytko podczas jednych przełomowych badań, których wyniki opisali na łamach Nature. Międzynarodowy zespół naukowców z uczelni w USA, Wielkiej Brytanii i European XFEL poinformował o podgrzaniu złota do ponad 19 000 kelwinów bez utraty jego struktury krystalicznej.
To prawdopodobnie najbardziej gorący kryształ, jaki kiedykolwiek zarejestrowano, mówi profesor Thomas White z University of Nevada. Uzyskane wyniki obalają teorię zwaną katastrofą entropii, zgodnie z którą żadne ciało stałe nie może pozostać stabilne w temperaturze trzykrotnie przekraczającej jego temperaturę topnienia. Dla złota temperatura ta wynosi 1337 kelwinów, więc zgodnie z tą teorią złoto powinno utracić strukturę krystaliczną po przekroczeniu temperatury 4000 kelwinów. Tymczasem utrzymało ją przy temperaturze 14-krotnie wyższej od temperatury topnienia.
Naukowcy rozgrzewali cienką złotą folię wykorzystując do tego celu laser, którego impuls trwał 50 biliardowych części sekundy. Wydaje się, że powodem, dla którego złoto zachowało strukturę krystaliczną jest tempo rozgrzewania. Wyniki eksperymentu sugerują, że ciała stałe mogą zachować strukturę krystaliczną przy znacznie wyższych temperaturach niż sądzono, o ile zostaną odpowiednio szybko podgrzane. To zaś niezwykle ważne spostrzeżenie dla badań nad fizyką wysokich energii czy fuzją jądrową.
Do pomiaru tak wysokiej temperatury wewnątrz złotej folii potrzebne było odpowiednie narzędzie. W roli największego termometru na świecie wykorzystaliśmy Linac Coherent Light Source, 3-kilometrowy laser generujący twarde promieniowanie rentgenowskie. To po raz pierwszy pozwoliło nam zmierzyć temperaturę wewnątrz gęstej plazmy. Wcześniej taki pomiar nie był możliwy, wyjaśnia White.
Opracowana podczas badań nowa metoda pozwoli na bezpośrednie pomiary temperatury wewnątrz plazmy powstającej w momencie implozji podczas eksperymentów z inercyjnym uwięzieniem plazmy podczas fuzji jądrowej. To z kolei powinno znakomicie zwiększyć naszą wiedzę na temat tego procesu i możliwości jego kontroli, co jest niezbędne do stworzenia praktycznych elektrowni fuzyjnych.
Niedawno White i jego zespół ponownie zaczęli wykorzystywać Linac Coherent Light Source. Tym razem prowadzą eksperymenty z gorącym skompresowanym żelazem. Chcą w ten sposób lepiej poznać warunki panujące wewnątrz planet.
Źródło: Superheating gold beyond the predicted entropy catastrophe threshold
« powrót do artykułu -
przez KopalniaWiedzy.pl
Krążący wysoko nad Antarktydą wykrywacz promieniowania kosmicznego, zarejestrował nietypowe sygnały, które wykraczają poza nasze obecne rozumienie fizyki cząstek. ANITA (Antarctic Impulsive Transient Antenna) to zespół wyspecjalizowanych anten, które za pomocą balonu wypuszczane były nad Antarktyką i przez około miesiąc krążyły na wysokości do 40 kilometrów, unoszone przez wiatry obiegające kontynent. Celem eksperymentu jest obserwowanie promieniowania kosmicznego po tym, jak dotarło do Ziemi. W trakcie badań co najmniej 2-krotnie zarejestrowano sygnały, które nie pochodzą od promieniowania odbitego przez lód, a kierunek, z którego napłynęły, nie pozwala wyjaśnić ich pochodzenia na gruncie znanych zjawisk fizycznych.
Sygnały radiowe, które odkryliśmy, nadeszły z bardzo ostrego kąta, około 30 stopni spod powierzchni lodu, mówi profesor Stephanie Wissel. Z obliczeń wynika, że taki sygnał musiałby przejść przez tysiące kilometrów skał, z których zbudowana jest Ziemia, ale wówczas byłby niewykrywalny, gdyż zostałby przez Ziemię zaabsorbowany. To interesujący problem, bo obecnie nie potrafimy wyjaśnić, czym jest ten sygnał. Wiemy jednak, że to najprawdopodobniej nie pochodzi z neutrin, dodaje uczona.
Neutrina to cząstki bardzo pożądane przez naukowców. Niosą ze sobą ogrom informacji. W każdej sekundzie przez nasze ciała przechodzą biliony neutrin i nie czynią nam szkody. Neutrina niemal nigdy nie wchodzą w interakcje, trudno więc je wykryć.
Źródłem neutrin mogą być na przykład wydarzenia, do których doszło miliary lat świetlne od nas. Wykrycie takiego neutrina to dla naukowców okazja, by dowiedzieć się czegoś więcej o wydarzeniu, które było jego źródłem.
ANITA ma wykrywać też neutrina. Została umieszczona nad Antarktyką, gdyż tam istnienie najmniejsze ryzyko zakłócenia jej pracy przez inne sygnały. Unoszony przez balon zespół anten skierowany jest w dół i rejestruje wielkie pęki atmosferyczne odbite od lodu. Wielki pęk atmosferyczny, to wywołana pojedynczą cząstką promieniowania atmosferycznego kaskada cząstek powstających w atmosferze Ziemi.
ANITA rejestruje takie pęki odbite od lodu, naukowcy są w stanie przeanalizować sam pęk, jak i pęk odbity od lodu i na tej podstawie określić, jaka cząstka wywołała pęk. Na podstawie kąta odbicia sygnału można zaś określić jego źródło. I tutaj pojawia się problem, gdyż zarejestrowano też sygnały, których nie można prześledzić do źródła. Kąt ich odbicia jest bowiem znacznie bardziej ostry, niż przewidują istniejące modele.
Naukowcy przeanalizowali dane z wielu przelotów, porównali je z modelami matematycznymi, przeprowadzili liczne symulacje i wykluczyli zakłócenia tła i inne źródła sygnałów. Porównali swoje dane z niezależnie zbieranymi danymi innych instrumentów naukowych, takich jak IceCube Experiment czy Pierre Auger Observatory, by sprawdzić, czy i one odebrały podobne nietypowe sygnały. Okazało się, że nie. Dlatego też Wissel i jej koledzy określają znalezione sygnały jako „nietypowe” i wykluczają, by były one spowodowane przez neutrina. Sygnały nie pasują do standardowych modeli fizyki cząstek. Być może wyjaśnieniem tkwi w mniej popularnych teoriach, z których wynika, że sygnały te mogą pochodzić od ciemnej materii, jednak brak na to dowodów.
Obecnie naukowcy budują nowe urządzenie, PUEO. Będzie ono większe i bardziej czułe. Badacze mają nadzieję, że rzuci ono nowe światło na nietypowe sygnały. Sądzę, że przy powierzchni lodu i blisko horyzontu dochodzi do jakichś interesujących zjawisk związanych z rozprzestrzenianiem się sygnałów radiowych. Nie rozumiemy tego. Sprawdzaliśmy różne hipotezy i do niczego nie doszliśmy. To tajemnica. Bardzo się cieszę na myśl o tym, że powstaje bardziej czułe PUEO. Powinniśmy uchwycić więcej takich anomalii, dzięki czemu być może zrozumiemy, z czym mamy do czynienia, dodaje Wissel.
Źródło: Search for the Anomalous Events Detected by ANITA Using the Pierre Auger Observatory, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.134.121003
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wielkie tsunami niszczą wybrzeża i transportują olbrzymie ilości szczątków roślinnych i innych na dużej odległości. Jednak z powodu erozji wybrzeży i słabego zachowywania się materiału roślinnego, trudno jest rozpoznać depozyty złożone przez tsunami w starszym zapisie geologicznym. Grupa japońskich naukowców zidentyfikowała wyjątkowo bogate nagromadzenie bursztynu w osadach morskich na dużej głębokości. Uczeni uważają, że bursztyn znalazł się tam w wyniku jednego lub więcej tsunami, które uderzyło w wybrzeże Wysp Japońskich pomiędzy 116 a 114 milionów lat temu.
Uczeni analizowali bogate w bursztyn pokłady krzemionki znajdujące się w kamieniołomie Shimonakagawa. Złoża te powstały około 115 milionów lat temu, gdy region ten stanowił dno głębokiego morza. Naukowcy zauważyli, że złoża bursztynu są zdeformowane w sposób przypominający struktury płomieniowe w deformacjach sedymentacyjnych. Struktury takie tworzą się w miękkich osadach. Jako że żywica wystawiona na działanie powietrza twardnieje w ciągu tygodni, struktury płomieniowe sugerują, że żywica z której powstał bursztyn, nie była przez dłuższy czas wystawiona na kontakt z powietrzem. Szybko trafiła na dno.
Zdaniem autorów badań, jedynym scenariuszem, który wyjaśnia tak szybkie przedostanie się dużej ilości żywicy na dno jest przyniesienie jej tam przez tsunami. Żywica została następnie przykryta warstwą mułu i zachowana do naszych czasów.
Ze szczegółami badań można zapoznać się na łamach Scientific Reports.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Jezioro Żabińskie (Żabinki) na Pojezierzu Mazurskim w gminie Kruklanki dostarczyło niezwykle szczegółowych danych dotyczących temperatur w holocenie. Profesor Wojciech Tylmann i doktor Maurycy Żarczyński z Wydziału Oceanografii i Geografii Uniwersytetu Gdańskiego, we współpracy z kolegami z Niemiec i Szwajcarii przeprowadzili badania osadów jeziora, które pozwoliły im na zrekonstruowanie temperatur z ostatnich 10 800 lat.
Każda analizowana próbka reprezentowała okres 3 lat, dzięki czemu naukowcy byli w stanie śledzić dekadowe zmienności temperatury. Nasza rekonstrukcja jest jedną z nielicznych na świecie, która operuje tak wysoką rozdzielczością czasową, stwierdził prof. Tylmann.
Jezioro Żabińskie jest wyjątkowe. Odkładające się przez tysiąclecia warstwy osadów pozostały nienaruszone. Co więcej, wyraźnie widać w nich roczne przyrosty. Mamy tam naprzemienne warstwy jasną (odkłada się wiosną oraz latem i jest bogata w węglan wapnia) oraz ciemną (zdominowana przez szczątki organiczne, odkłada się jesienią i zimą). Dwie takie warstwy tworzą więc jeden rok.
Uczeni pobrali 20-metrowy rdzeń i skoncentrowali się na badaniu węglanu wapnia. Zainteresowali się właśnie nim, gdyż prowadzone od kilkunastu lat badania pokazały, że w Jeziorze Żabińskim istnieje zależność pomiędzy warunkami meteorologicznymi, a wytrącaniem się węglanu wapnia. Gdy spostrzeżenie to potwierdzono analizą za ostatnich 60 lat, stwierdzono, że węglan wapnia pozwoli zrozumieć historię jeziora.
Badania pokazały, że mediana wzrostu temperatur w ciągu ostatnich 90 lat wynosi 0,28 stopni Celsjusza na dekadę i jest najszybsza w całym badanym okresie. Obecne temperatury nie tylko są najwyższe od niemal 11 tysięcy lat, ale też mamy do czynienia z ich bezprecedensowo szybkim wzrostem.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.