Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Na Antarktydzie znaleziono pozostałości po lesie deszczowym

Rekomendowane odpowiedzi

W odległości zaledwie 900 kilometrów od Bieguna Południowego odkryto pozostałości lasu deszczowego sprzed 90 milionów lat. Analiza znalezionej tam gleby z okresu kredy wykazała obecność korzeni, pyłków i zarodników. To dowodzi, że klimat był wówczas znacznie cieplejszy niż dotychczas sądzono.

Odkrycia dokonał niemiecko-brytyjski zespół naukowy z Centrum Badań Polarnych i Morskich w Niemczech oraz Imperial College London. Współautorka badań profesor Tina van de Flierdt z Imperial, powiedziała: zachowanie pozostałości po lesie sprzed 90 milionów lat jest czymś wyjątkowym, jednak jeszcze bardziej zaskakujące jest to, czego się dowiadujemy. Nawet w czasie nocy polarnej bagniste lasy deszczowe mogły rosnąc w pobliżu Bieguna Południowego, pokazując nam, ze klimat był wówczas cieplejszy niż sądziliśmy.

To również sugeruje, że poziom CO2 w atmosferze był w tym okresie wyższy, niż przypuszczano, co może być przyczynkiem do zmian w modelach klimatycznych dla tamtego okresu. Środkowy okres kredy (115–80 milionów lat temu) to okres największego rozkwitu dinozaurów i jednocześnie najgorętszy okres ostatnich 140 milionów lat. Poziom oceanów był wówczas o 170 metrów wyższy niż obecnie, a średnie temperatury w tropikach mogły sięgać 35 stopni Celsjusza.

Niewiele jednak wiemy o warunkach, jakie wówczas panowały w okolicach bieguna południowego. Teraz naukowcy odkryli tam pozostałości lasu deszczowego, który mógł być podobny do lasów występujących obecnie na Nowej Zelandii. I to mimo faktu, żę przez cztery miesiące w roku panuje na tym terenie mrok. Obecność lasu deszczowego sugeruje że średnie temperatury wynosiły tam około 12 stopni Celsjusza. Mało prawdopodobne, by był tam jakikolwiek lód.

Pozostałości gleby z tropikalnego lasu pochodzą z osadów pobranych w pobliżu lodowców Pine Island i Thwaites w Zachodniej Antarktyce. Uwagę naukowców przykuła część osadów o nietypowym kolorze. Przeprowadzili więc skanowanie tomografem komputerowym i ujawnili gęstą siec korzeni, które były tak dobrze zachowane, iż można było zobaczyć strukturę poszczególnych komórek. Próbka zawierała też olbrzymią ilość pyłków i zarodników, w tym pierwsze znalezione na tej szerokości geograficznej pozostałości roślin kwitnących.

Wykonana przez naukowców rekonstrukcja klimatu wykazała, że średnia roczna temperatura na tamtym obszarze wynosiła około 12 stopni Celsjusza, czyli była sporo wyższa niż w Polsce. Z kolei średnia temperatura w miesiącach letnich to około 19 stopni Celsjusza. Temperatura wody w rzekach i bagnach dochodziła do 20 stopni Celsjusza, a ilość opadów dorównywała obecnej ilości opadów w Walii.

Przed naszymi badaniami uznawano, że w kredzie koncentracja dwutlenku węgla w atmosferze wynosiła około 1000 ppn. Jednak z modeli uwzględniających zdobyte przez nas dane wynika, że taka jak opisywana temperatura na Antarktyce może być osiągnięta przy koncentracji CO2 rzędu 1120–1680 ppm, mówi główny autor badań, doktor Johann Klages z Centrum Badań Morskich i Polarnych.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Godzinę temu, KopalniaWiedzy.pl napisał:

Poziom oceanów był wówczas o 170 metrów wyższy niż obecnie

Tzn. oceany były płytsze?  Jak to porównywać przy całkowicie innym ukształtowaniu skorupy ziemskiej? Bo obecnie nie ma tyle wody aby uzyskać taki przyrost poziomu.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Niektóre źródła podają, że stopienie wszystkich lodów, jakie istnieją na Ziemi może podnieść poziom oceanów nawet o 200 metrów. Nie wiem na ile w tym prawdy, a na ile oszacowania. W każdym razie, wydaje mi się, że bardzo trudno jest to dokładnie obliczyć, bo należałoby znać objętość lub masę wszystkich lodów, jakie na Ziemi występują, a jest tego od groma. Antarktyda i Grenlandia są oczywiście największe. Ale ogromne obszary północnej Kanady i Rosji również pokrywają lody. Niektóre z nich są trudno dostrzegalne, bo znajdują się w tzw. wiecznej zmarzlinie. Do tego dochodzą górskie lodowce - Himalaje, Kamczatka, Alaska, Skandynawia, Alpy, to tylko drobne przykłady. Nawet w Afryce znajdziesz lodowce. Te lodowce to nie tylko to co widać z wierzchu, to także lodowe jaskinie, których ilość i wielkość chyba nawet nie jest znana. Znamy tylko te, do których odkryliśmy wejścia. Można to jedynie próbować oszacować.

Z drugiej strony podniesienie temperatury Ziemi spowoduje też większe nasycenie atmosfery parą wodną. A kiedyś dla zabawy próbowałem obliczyć o ile podniósłby się poziom oceanów, gdyby obecnie cała para wodna z atmosfery się skropliła. Niestety nie pamiętam teraz dokładnie wyniku, ale chyba wyszło mi kilka centymetrów.

 

A co do samej Antarktydy, to o ile badania kontynentów są poprawne, to ok. 90 milionów lat temu Antarktyda nie znajdowała się jeszcze na biegunie. Ona dopiero zaczynała odrywać się od Pangei i rozpoczęła dryf w kierunku bieguna. Gdyby dzisiaj znajdowała się w tym samym miejscu co wtedy, to pewnie też rosłyby na niej lasy. Z panującym wówczas klimatem nie ma to nic wspólnego. Poziom wody był wówczas wyższy, bo Pangea leżała pomiędzy biegunami i stosunkowo mało lodu gromadziło się na lądach. Wyciąganie wniosków o klimacie z samego tylko faktu, że ktoś znalazł korzonki jest absurdalne.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W 2023 roku średnia temperatura była niemal o 1,5 stopnia wyższa od średniej sprzed rewolucji przemysłowej. Jednak naukowcy próbujący wyjaśnić ten wzrost, mają kłopoty z określeniem jego przyczyn. Gdy bowiem biorą pod uwagę emisję gazów cieplarnianych, zjawisko El Niño czy wpływ erupcji wulkanicznych, wciąż niewyjaśnione pozostaje około 0,2 stopnia wzrostu. Uczeni z Instytutu Badań Polarnych i Morskich im. Alfreda Wegenera (AWI) zaproponowali na łamach Science wyjaśnienie tego zjawiska. Według nich te brakujące 0,2 stopnia to skutek zmniejszającego się albedo – zdolności do odbijania światła – Ziemi.
      Uczeni z AWI, we współpracy ze specjalistami od modelowania klimatu z European Centre for Medium-Range Weather Forecasts (ECMWF), przeanalizowali dane satelitarne z NASA oraz ponownie przyjrzeli się danym ECMWF. Niektóre z nich pochodziły nawet z roku 1940. Na ich podstawie sprawdzili jak przez ostatnie dziesięciolecia zmieniał się globalny budżet energetyczny oraz pokrywa chmur na różnych wysokościach. Zarówno w danych NASA, jak i ECMWF, rok 2023 wyróżniał się jako ten o najniższym albedo planetarnym. Od lat obserwujemy niewielki spadek albedo. Ale dane pokazują, że w 2023 roku albedo było najniższe od co najmniej roku 1940, mówi doktor Thomas Rackow.
      Zmniejszanie się albedo Ziemi naukowcy obserwują od lat 70. Częściowo za zjawisko to odpowiadało zmniejszanie się pokrywy lodowej oraz ilości lodu pływającego w Arktyce. Mniej śniegu i lodu oznacza, że mniej promieniowania słonecznego jest odbijane przez Ziemię. Od 2016 roku efekt ten został wzmocniony przez zmniejszanie się zasięgu lodu pływającego w Antarktyce. Jednak nasze analizy pokazywały, że spadek albedo w regionach polarnych odpowiada jedynie za 15% całkowitego spadku albedo, dodaje doktor Helge Goessling. Albedo zmniejszyło się też jednak w innych regionach planety i gdy naukowcy wprowadzili dane do modeli budżetu energetycznego stwierdzili, że gdyby nie spadek albedo od grudnia 2020, to średni temperatury w roku 2023 byłyby o 0,23 stopnie Celsjusza niższe.
      Na zmniejszenie albedo wpłynął przede wszystkim zanik nisko położonych chmur z północnych średnich szerokości geograficznych i z tropików. Szczególnie silnie zjawisko to zaznaczyło się na Atlantyku, co wyjaśniałoby, dlaczego był on tak niezwykle gorący. Pokrywa chmur na średnich i dużych wysokościach nie uległa zmianie lub zmieniła się nieznacznie.
      Chmury na wszystkich wysokościach odbijają światło słoneczne, przyczyniając się do ochłodzenia planety. Jednak te, które znajdują się w wysokich, chłodnych warstwach atmosfery, tworzą rodzaj otuliny, który zapobiega ucieczce w przestrzeń kosmiczną ciepła wypromieniowywanego przez Ziemię. Zatem utrata chmur położonych niżej oznacza, że tracimy część efektu chłodzącego, wpływ ocieplający chmur pozostaje.
      Rodzi się więc pytanie, dlaczego niżej położone chmury zanikły. Częściowo przyczyną może być mniejsza antropogeniczna emisja aerozoli, szczególnie z powodu narzucenia bardziej restrykcyjnych norm na paliwo używane przez statki. Aerozole z jednej strony biorą udział w tworzeniu się chmur, z drugiej zaś – same odbijają promieniowanie słoneczne. Jednak badacze uważają, że czystsze powietrze to nie wszystko i mamy do czynienia z bardziej niepokojącym zjawiskiem.
      Ich zdaniem to sama zwiększająca się temperatura powoduje, że na mniejszych wysokościach formuje się mniej chmur. Jeśli zaś znaczna część spadku albedo to – jak pokazują niektóre modele klimatyczne – skutek sprzężenia zwrotnego pomiędzy globalnym ociepleniem a nisko położonymi chmurami, to w przyszłości powinniśmy spodziewać się jeszcze bardziej intensywnego ocieplenia. Średnia temperatura na Ziemi może przekroczyć granicę wzrostu o 1,5 stopnia Celsjusza w porównaniu z epoką przedprzemysłową wcześniej, niż sądziliśmy, dodaje Goessling.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ponad 35 milionów lat temu w Ziemię uderzyły dwie wielkie asteroidy, ale nie doprowadziły one do długotrwałych zmian klimatu, stwierdzili naukowcy z University College London. Skały miały średnicę wielu kilometrów (5–8 oraz 3–5 km) i spadły na planetę w odstępie około 25 tysięcy lat. Po jednej został 100-kilometrowy krater Popigai na Syberii, pozostałością po drugim z uderzeń jest krater w Chesapeake Bay w USA o średnicy 40–85 kilometrów. To 4. i 5. pod względem wielkości kratery uderzeniowe na Ziemi.
      Na łamach Communications Earth & Environment uczone z Londynu – Bridget S. Wade i Natalie K. Y. Cheng – opublikowały właśnie artykuł, w którym informują, że w ciągu 150 tysięcy lat po uderzeniu asteroid nie stwierdziły długotrwałych zmian klimatu. Śladów takich zmian szukały w izotopach muszli stworzeń morskich, które żyły w tamtym czasie. Stosunek poszczególnych izotopów wskazuje, jak ciepłe były oceany, gdy zwierzę żyło.
      Po uderzeniach nie doszło do żadnej zmiany. Spodziewałyśmy się, że stosunki izotopów zmienią się w jedną lub drugą stronę, wskazując na cieplejsze lub chłodniejsze wody, ale tak się nie stało.[...] Jednak nasze badania nie mogły wychwycić zmian w krótszych przedziałach czasu, gdyż pobierane próbki dzieliło 11 tysięcy lat. Tak więc w skali ludzkiej takie uderzenia mogłyby być katastrofami. Mogły spowodować potężne fale uderzeniowe, tsunami, wielkie pożary, mogły wzbić w powietrze olbrzymie ilości pyłów, które blokowałyby promienie słoneczne. Nawet badania, w czasie których modelowano uderzenie asteroidy Chicxulub – która zabiła dinozaury – pokazały, że po jej uderzeniu zmiana klimatu trwała mniej niż 25 tysięcy lat, stwierdza profesor Wade.
      Uczone badały skamieniałości z okresu od 35,9 do 35,5 milionów lat temu. O ile po upadku asteroid nie doszło do żadnych długotrwałych zmian klimatu, to zauważyły zmiany w izotopach wskazujące, że około 100 000 lat przed pierwszym uderzeniem wody powierzchniowe oceanów ociepliły się o 2 stopnie Celsjusza, a wody głębinowe ochłodziły o 1 stopień.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Jeszcze do niedawna Antarktyda była jedynym kontynentem, na którym nie znaleziono bursztynu. Właśnie się to zmieniło. Naukowcy z Alfred-Wegener-Institut (AWI) i TU Bergakademie Freiberg opublikowali na łamach Antarctic Science artykuł, w którym informują o odkryciu najbliższych biegunowi południowemu kawałków bursztynu. Dowodzi to, że około 90 milionów lat temu na Antarktydzie rosły drzewa, z których wyciekała żywica.
      Bursztyn znaleziono w rdzeniu pobranym podczas wyprawy badawczej na pokładzie lodołamacza Polarstern w 2017 roku. Rdzeń został pobrany w Zatoce Pine Island z osadów dennych znajdujących się na głębokości 946 metrów. Dokładne współrzędne geograficzne miejsca pochodzenia rdzenia to 73 stopnie 57 minut szerokości geograficznej południowej i 107 stopni 9 minut długości geograficznej zachodniej (73.57°S, 107.09°W).
      Żywica znajdowała się w 5-centymetrowej warstwie węgla brunatnego. Po wysuszeniu, węgiel został pokruszony na 1-milimetrowe kawałki i zbadany pod mikroskopem. Właśnie wtedy zauważono liczne fragmenty bursztynu o długości 0,5–1 mm. Miały one barwę od intensywnie żółtej po brązowawą.
      Analizowane fragmenty dają nam bezpośredni wgląd w warunki naturalne, jakie 90 milionów lat temu panowały w Zachodniej Antarktyce. To również fascynujące szczegółowe uzupełnienie wiedzy o funkcjonowaniu lasu, który opisaliśmy w Nature w 2020 roku, mówi geolog morski Johann P. Klages z AWI. Widzimy więc, że w pewnym momencie swojej historii każdy z siedmiu współczesnych kontynentów zapewniał warunki do życia drzewom wytwarzającym żywicę. Naszym celem jest dowiedzenie się jak najwięcej o tym lesie. Czy dochodziło tam do pożarów, czy w bursztynie znajdziemy ślady życia. Nasze odkrycie pozwala nam na bezpośrednią podróż w czasie, stwierdza uczony.
      Znalezienie bursztynu to kolejny kawałek układanki, dzięki któremu lepiej zrozumiemy bagnisty, pełen drzew iglastych las strefy umiarkowanej, jaki na biegunie południowym istniał we wczesnej kredzie, dodaje Henny Gerschel z TU Bergakademie Freiberg.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Punktem wyjścia dla szacowania poziomu antropogenicznego ocieplenia jest zwykle rok 1850, kiedy na wystarczająco dużą skalę prowadzono wiarygodne pomiary temperatury. Jednak w roku 1850 rewolucja przemysłowa trwała od dawna, więc przyjmując ten rok jako podstawę dla pomiarów, trudno jest mówić o wpływie człowieka na temperatury na Ziemi od czasów preindustrialnych. Andrew Jarvis z Lancaster University i Piers Forster z University of Leeds, wykorzystali rdzenie lodowe z Antarktyki do opracowania nowej osi referencyjnej temperatur w czasach przedprzemysłowych.
      Uczeni przeanalizowali bąbelki powietrza zamknięte w rdzeniach lodowych i w ten sposób określili stężenie dwutlenku węgla w latach 13–1700. Następnie, zakładając liniową zależność pomiędzy koncentracją CO2 a temperaturami, obliczyli średnie temperatury panujące na Ziemi.
      Z pracy opublikowanej na łamach Nature Geoscience dowiadujemy się, że od okresu przed 1700 roku do roku 2023 ludzie podnieśli średnią temperaturę na planecie o 1,49 (±0,11) stopnia Celsjusza. Dodatkową zaletą wykorzystanej metody jest niezależna weryfikacja obecnych szacunków. Z badań Jarvisa i Forstera wynika, że od roku 1850 wzrost temperatury wyniósł 1,31 stopnia Celsjusza. Dokładnie zgadza się to z dotychczasowymi ustaleniami, ale badania z rdzeni lodowych są obarczone mniejszym marginesem błędu.
      Niektórzy eksperci uważają, że nowa metoda, chociaż sprawdza się teraz, może nie być przydatna w przyszłości. Nie wiemy bowiem, czy w nadchodzących dekadach liniowa zależność pomiędzy stężeniem dwutlenku węgla a temperaturą się utrzyma. Ich metoda bazuje na korelacji stężenia CO2 z antropogenicznym ociepleniem klimatu. Ta widoczna w przeszłości silna korelacja może być czystym przypadkiem i, w zależności od tego jak będą się układały proporcje CO2 i innych czynników w przyszłości, może się ona nie utrzymać, stwierdza Joeri Rogelj z Imperial College London.
      Richard Betts z Met Office chwali nową metodę, zauważa, że może dostarczać ona lepszych danych na temat przeszłości, ale nie widzi potrzeby zmiany punktu odniesienia dla badań nad ociepleniem klimatu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Nowa krzywa globalnych temperatur wskazuje, że w fanerozoiku średnie temperatury na Ziemi zmieniały się bardziej niż przypuszczano. Naukowcy z University of Arizona i Smithsonian Institution przeprowadzili badania, w ramach których zrekonstruowali temperatury w ciągu ostatnich 485 milionów lat. To okres, w którym życie na naszej planecie zróżnicowało się, podbiło lądy i przetrwało liczne okresy wymierania.
      Fanerozoik rozpoczyna się eksplozją kambryjską sprzed około 540 milionów lat i trwa do dzisiaj. Naukowcy w swoich badaniach ograniczyli się do 485 milionów lat, ze względu na niedostateczną ilość starszych danych geologicznych. Trudno jest znaleźć tak stare skały, w których zachował się zapis o panujących temperaturach. Nie mamy ich zbyt wielu nawet dla 485 milionów lat temu. To ogranicza nasze cofanie się w czasie, mówi profesor Jessica Tierney z Arizony.
      Uczeni wykorzystali asymilację danych, w trakcie której połączyli zapis geologiczny z modelami klimatycznymi. Badania pozwoliły im lepiej zrozumieć, czego możemy spodziewać się w przyszłości. Jeśli badasz ostatnich kilka milionów lat, to nie znajdziesz niczego, co może być analogią dla zjawisk, jakich spodziewamy się w roku 2100 czy 2500. Trzeba cofnąć się znacznie dalej, gdy Ziemia była naprawdę gorąca. Tylko tak możemy zrozumieć zmiany, jakie mogą zajść w przyszłości, wyjaśnia Scott Wing, kurator zbiorów paleobotaniki w Smithsonian National Museum of Natural History.
      Nowa krzywa temperatury pokazuje, że w tym czasie średnie temperatury na Ziemi zmieniały się w zakresie od 11,1 do 36,1 stopnia Celsjusza, a okresy wzrostu temperatur były najczęściej skorelowane ze zwiększoną emisją dwutlenku węgla do atmosfery. To jasno pokazuje, że dwutlenek węgla jest głównym czynnikiem kontrolującym temperatury na Ziemi. Gdy jest go mało, temperatury są niskie, gdy jest go dużo, na Ziemi jest gorąco, dodaje Tierney.
      Badania pokazały też, że obecnie średnia temperatura jest niższa niż średnia dla większości fanerozoiku. Jednocześnie jednak antropogeniczne emisje CO2 powodują znacznie szybszy wzrost temperatury niż w jakimkolwiek momencie z ostatnich 485 milionów lat. To stwarza duże zagrożenie dla wielu gatunków roślin i zwierząt. Niektóre okresy szybkich zmian klimatycznych wiązały się z masowym wymieraniem.
      Badacze zauważają, że ocieplenie klimatu może być też niebezpieczne dla ludzi. Nasz gatunek doświadczył w swojej historii zmian średnich temperatur o około 5 stopni Celsjusza. To niewiele, jak na 25-stopniową zmianę w ciągu ostatnich 485 milionów lat. Wyewoluowaliśmy w chłodnym okresie, który nie jest typowy dla większości geologicznej historii. Zmieniamy klimat w sposób, który wykracza poza to, czego doświadczyliśmy. Planeta była i może być cieplejsza, ale ludzie i zwierzęta nie zaadaptują się do tak szybkich zmian, dodaje Tierney.
      Projekt zbadania temperatur w fanerozoiku rozpoczął się w 2018 roku, gdy pracownicy Smithsonian National Museum postanowili zaprezentować zwiedzającym krzywą temperatur z całego eonu. Badacze wykorzystali pięć różnych chemicznych wskaźników temperatury zachowanych w skamieniałym materiale organicznym. Na ich podstawie oszacowali temperaturę w 150 000 krótkich okresach czasu. Jednocześnie współpracujący z nimi naukowcy z University of Bristol – na podstawie rozkładu kontynentów i składu atmosfery – stworzyli ponad 850 symulacji temperatur w badanym czasie. Następnie autorzy badań połączyli oba zestawy danych, tworząc najbardziej precyzyjną krzywą temperatur dla ostatnich 485 milionów lat.
      Dodatkową korzyścią z badań jest stwierdzenie, że czułość klimatu – czyli przewidywana zmiana średniej temperatury na Ziemi przy dwukrotnej zmianie stężenia CO2 – jest stała. Dwutlenek węgla i temperatury są nie tylko blisko powiązane, ale są powiązane w ten sam sposób przez 485 milionów lat. Nie zauważyliśmy, by czułość klimatu zmieniała się w zależności od tego, czy jest zimno czy gorąco, dodaje Tierney.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...