Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Jedną z największych tajemnic fizyki jądrowej jest odpowiedź na pytanie, dlaczego wszechświat jest zbudowany z takich a nie innych pierwiastków. Dlaczego nie z innych? Naukowców szczególnie interesują procesy fizyczne stojące u podstaw powstania ciężkich pierwiastków, jak złoto, platyna czy uran. Obecnie uważa się, że powstają one podczas łączenia się gwiazd neutronowych oraz eksplozji gwiazd.

W Argonne National Laboratory opracowano nowe techniki badania natury i pochodzenia ciężkich pierwiastków, a uczeni z Argonne stanęli na czele międzynarodowej grupy badawczej, która prowadzi w CERN eksperymenty mające dać nam wgląd w procesy powstawania egzotycznych jąder i opracowani modeli tego, co dzieje się w gwiazdach i wydarzeń we wczesnym wszechświecie.

Nie możemy sięgnąć do wnętrza supernowych, więc musimy stworzyć na Ziemi ekstremalne warunki, jakie w nich panują i badać reakcje, jakie tam zachodzą, stwierdził fizyk Ben Kay z Argonne National Laboratory i główny autor najnowszych badań.

Uczonym biorącym udział w projekcie udało się – jako pierwszym w historii – zaobserwować strukturę jądra o mniejszej liczbie protonów niż w jądrze ołowiu i o liczbie neutronów przekraczających 126. To jedna z liczb magicznych fizyki jądrowej. Liczba magiczne dla protonów i neutronów wynoszą m.in. 8, 20, 28, 50 i 126. To wartości kanoniczne. Fizycy wiedzą, że jądra atomów o takich wartościach charakteryzują się zwiększoną stabilnością. Jądra o liczbie neutronów powyżej 126 są słabo zbadane, gdyż trudno je uzyskać. Wiedza o ich zachowaniu jest kluczowa dla zrozumienia procesu wychwytu neutronu (proces r), w wyniku którego powstaje wiele ciężkich pierwiastków.

Obecnie obowiązujące teorie przewidują, że proces r zachodzi w gwiazdach. W tych bogatych w neutrony środowiskach jądra atomowe mogą rosnąć wychwytując neutrony i tworząc cięższe pierwiastki. Proces ten jest na tyle szybki, że nowe cięższe pierwiastki tworzą się zanim jeszcze dojdzie do rozpadu.

Twórcy eksperymentu skupili się na izotopie rtęci 207Hg. Jego badanie może bowiem rzucić światło na ich bezpośrednich sąsiadów, jądra bezpośrednio zaangażowane w proces r. Naukowcy najpierw wykorzystali infrastrukturę HIE-ISOLDE w CERN. Wysokoenergetyczny strumień protonów skierowali na roztopiony ołów. W wyniku kolizji powstały setki egzotycznych radioaktywnych izotopów. Odseparowali z nich 206Hg i w akceleratorze HIE-ISOLDE wytworzyli strumień jąder o najwyższej osiągniętej tam energii. Strumień skierowali na deuter znajdujący się w ISOLDE Solenoidal Spectrometer.

Żadne inne urządzenie na świecie nie jest w stanie wytworzyć strumienia jąder rtęci o tej masie i nadać mu takiej energii. To w połączeniu z wyjątkową rozdzielczością ISS pozwolió nam na przeprowadzenie pierwszych w historii obserwacji stanów wzbudzonych 207Hg, mówi Kay.  Dzięki ISS naukowcy mogli więc obserwować, jak jądra 206Hg przechwyciły neutron stając się 207Hg.

Deuter to ciężki izotop wodoru. Zawiera proton i neutron. Gdy 206Hg przechwytuje z niego neutron, dochodzi do odrzutu protonu. Emitowane w tym procesie protony trafiają do detektora w ISS, a ich pozycja i energia zdradzają kluczowe informacje o strukturze jądra. Informacje te mają bardzo duży wpływ na proces r i uzyskane w ten sposób dane pozwalają na przeprowadzenie istotnych obliczeń.

ISS korzysta z pionierskiej koncepcji opracowanej przez Johna Schiffera z Argonne National Laboratory. Na podstawie jego pomysłu zbudowano w Argone urządzenie HELIOS. Pozwoliło ono na badanie właściwości jąder atomowych, których wcześniej nie można było badać. HELIOS stał się inspiracją do zbudowania w CERN-ie ISS. Urządzenie to pracuje od 2008 roku i uzupełnia możliwości HELIOS.

Przez ostatnich 100 lat fizycy mogli zbierać informacje o jądrach atomowych dzięki bombardowaniu ciężkich jąder lekkimi jonami. Jednak reakcja przeprowadzana w drugą stronę, gdy ciężkie jądra uderzały w lekkie cele, prowadziła do pojawiania się wielu zakłóceń, które trudno było wyeliminować. Udało się to dopiero za pomocą HELIOS.

Gdy ciężka kula uderza w lekki cel dochodzi do zmiany kinematyki i uzyskane w ten sposób spektra są skompresowane. John Schiffer zauważył, że gdy do takiej kolizji dochodzi wewnątrz magnesu, wyemitowane w jej wyniku protony wędrują po spiralnym torze w kierunku detektora. Opracował pewną matematyczną sztuczkę, która opisuje tę kinematyczna kompresję, otrzymujemy więc zdekompresowane spektrum, z którego możemy wnioskować o strukturze jądrowej, wyjaśnia Kay.

Pierwsze analizy uzyskanych danych potwierdziły prawdziwość przewidywań teoretycznych. Naukowcy planują zatem kolejne eksperymenty, podczas których chcą wykorzystać inne jądra z obszaru 207Hg.

Ze szczegółami badań zapoznamy się na łamach Physical Review Letters.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      CERN udostępnił swój pierwszy publiczny Raport Środowiskowy, dotyczący m.in. emisji gazów cieplarnianych. Dowiadujemy się z niego, że w 2018 roku ta instytucja wyemitowała 223 800 ton ekwiwalentu dwutlenku węgla. To tyle co duży statek wycieczkowy.
      Z raportu dowiadujemy się, że aż 3/4 tej emisji powodują zawierające fluor gazy, używane podczas prac z wykrywaczami cząstek. CERN planuje zmniejszenie emisji.
      Obejmujący lata 2017–2018 raport sprowokował debatę zarówno wśród pracowników, jak i wśród osób z zewnątrz. Zaczęliśmy zastanawiać się, co można zrobić z tym już teraz i w jaki sposób projektować akceleratory przyszłości, mówi Frederick Bordry, dyrektor CERN ds. akceleratorów i technologii.
      Raport porusza wszelkie kwestie związane z wpływem CERN na środowisko, od emitowanego hałasu, po wpływ na bioróżnorodność, zużycie wody czy emitowane promieniowanie. Specjaliści orzekli, że to redukcja gazów cieplarnianych będzie miała największy wpływ na poprawę stanu środowiska. Inżynierowie już planują uszczelnienie miejsc wycieków w LHC i zoptymalizowanie systemu cyrkulacji gazu. Docelowo chcą, żeby w roli chłodziwa czujników gazy zawierające fluor zostały zastąpione przez dwutlenek węgla, który ma kilka tysięcy razy mniejszy potencjał cieplarniany. Gdy budowaliśmy Wielki Zderzacz Hadronów, nie docenialiśmy potencjału cieplarnianego tych gazów. Naszym głównym zmartwieniem była dziura ozonowa, mówi Bordry. Na razie CERN chce obniżyć swoją bezpośrednią emisję gazów cieplarnianych o 28% do roku 2024.
      Raport uwzględnia też pośrednią emisję generowaną przez CERN. Laboratorium zużywa bowiem tyle energii elektrycznej co niewielkie miasteczko. Zakładamy w LHC systemy odzyskiwania energii. Jesteśmy pionierami wykorzystania nadprzewodnictwa na duża skalę, co może zwiększyć efektywność sieci energetycznych.
      Jak jednak zauważają specjaliści, znacznie lepiej jest emitować gazy cieplarniane w celu dokonywania odkryć naukowych, niż w innych celach. Postęp naukowy jest bardzo ważny i trudno znaleźć ważniejszą instytucję naukową niż CERN. Osobiście wolę, byśmy emitowali gazy cieplarniane pracując w CERN niż lecąc samolotem do Pragi, by się upić na weekend, mówi John Barrett, z Sustainability Research Institute.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ostatnim rozdziałem końca wszechświata, który nastąpi długo po tym, jak zgaśnie ostatnia gwiazda, może być seria niezwykłych eksplozji. Niezwykłych, bo ich głównymi bohaterami będą supernowe z czarnych karłów, twierdzi Matt E. Caplan z Illinois State University, którego artykuł Black dwarf supernova in the far future został zaakceptowany do publikacji w Monthly Notices of the Royal Astronomical Society.
      Czarne karły jeszcze nie powstały, gdyż sam wszechświat istnieje zbyt krótko by mogły się pojawić. Ewolucja gwiazd jest determinowana przez ich masę. Niektóre eksplodują, stają się supernowymi i mogą zostać czarnymi dziurami. Jeszcze inne stają się niewielkimi gęstymi gwiazdami – białymi karłami. Po bilionach lat tracą blask i zamieniają się w czarne nie emitujące światła obiekty zwane czarnymi karłami. Caplan twierdzi, że pod koniec istnienia wszechświata mogą one rozświetlić go, eksplodując i zamieniając się w supernowe.
      Supernowe czarnych karłów powstaną w wyniku fuzji pyknonuklearnej (pycnonuclear fusion). Zwykle gwiazdy są zasilane dzięki reakcjom termojądrowym, gdzie wysokie temperatury i ciśnienie wymuszają łączenie się atomów w cięższe pierwiastki.
      Tymczasem fuzja pyknonuklearna zachodzi w wyniku pojawienia się tunelowania kwantowego, które pozwala atomom na zbliżenie się bardziej niż normalnie. To proces, który z czasem zmienia białego karła w żelazo – ostatni z pierwiastków, jaki może powstać w wyniku fuzji.
      Jak mówi Matt Caplan, takie reakcje zachodzą niezwykle powoli. Przez milion lat może nie dojść do ani jednej tego typu reakcji w czarnym karle, stwierdza uczony. Dla porównania – w każdej sekundzie w Słońcu dochodzi do fuzji ponad 1038 protonów.
      Zamiana czarnego karła w żelazo w wyniku fuzji pyknonuklearnej może potrwać od 101100 do 1032000 lat. To kolosalne skale czasowe, mówi astrofizyk Fred Adams z Univesrity of Michigan. Uważamy, że największe możliwe czarne dziury parują w ciągu 10100 lat. To mgnienie oka w porównaniu ze skalą omawianą w artykule.
      Gdy już większość czarnego karła zamieni się w żelazo, obiekt zostanie zmiażdżony przez własną masę. Dojdzie do implozji, która odrzuci zewnętrzne warstwy. Podobne procesy zachodzą we współczesnym wszechświecie, gdzie gromadzenie się żelaza prowadzi do pojawienia się supernowych Typu II.
      Jak wylicza Caplan, supernowa czarnego karła może powstać z czarnego karła o masie od 1,16 do 1,35 masy Słońca. Z kolei takie czarne karły powstaną z typowych gwiazd o masie od 6 do 10 mas Słońca. Gwiazdy o takiej masie nie są zbyt rozpowszechnione, chociaż nie można też powiedzieć, że występują rzadko. Szacuje się, że stanowią one około 1% wszystkich gwiazd. Na tej podstawie Caplan szacuje, że przed końcem wszechświata pojawi się około 1021 supernowych czarnych karłów. Jako, że czarne karły będą miały niewielką masę, ich supernowe nie będą tak olbrzymie jak znane nam supernowe, jednak nadal będzie to spektakularne widowisko, szczególnie w pozbawionym gwiazd ciemnym wszechświecie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przed około 359 milionami lat Ziemia doświadczyła epizodu wymierania, podczas którego niemal całkowicie wyginęły akritarchy i ryby pancerne. To późnodewońskie wymieranie, zwane kryzysem Hangenberg, trwało około 300 000 lat. Brian Field z University of Illinois Urbana-Champaign upublicznił artykuł [PDF], w którym dowodzi, że za wymieranie to odpowiada... wybuch supernowej.
      Uważa się, że kryzys Hangenberg był spowodowany długotrwałym ubytkiem ozonu, przez co do Ziemi docierało zbyt dużo szkodliwego promieniowania ultrafioletowego ze Słońca. Jedną z możliwych przyczyn ubytku ozonu jest pojawienie się w niższych warstwach atmosfery dużej ilości pary wodnej, która może brać udział w cyklu pojawiania się wolnych rodników tlenku chloru, który niszczy ozon. Jednak hipoteza taka jest o tyle wątpliwa, że para wodna mogłaby utrzymywać się w atmosferze zbyt krótko, by wywołać wymieranie trwające 300 000 lat. Ponadto taki mechanizm spowodowałby redukcję ozonu na ograniczonym terenie geograficznym, tymczasem wiemy, że kryzys Hangenberg objął całą Ziemię.
      Brian Field uważa, że przyczyną wymierania mógł być wybuch pobliskiej supernowej. Podczas takiego wydarzenia uwalniana jest olbrzym ilość promieniowania ultrafioletowego, X czy gamma. Promieniowanie kosmiczne z pobliskiej supernowej mogłoby oddziaływać na Ziemię przez 100 000 lat. To z kolei doprowadziłoby do długotrwałej globalnej utraty warstwy ozonowej. Hipoteza z supernową wyjaśnia zarówno skalę jak i czas trwania kryzysu Hangenberg.
      Z wyliczeń zespołu Fielda wynika, że za wspomniane wymieranie może być odpowiedzialny wybuch supernowej Typu II. Taki wybuch w odległości mniejszej niż 10 parseków (33 lata świetlne) od Ziemi prawdopodobnie zniszczyłby życie na naszej planecie.
      Dlatego też naukowcy sądzą, że do eksplozji doszło w odległości około 20 parseków. To wystarczająco blisko, by zabić wiele gatunków, jednak za daleko, by całkowicie zniszczyć życie.
      Dowodami na takie wydarzenie mają być radioaktywne izotopy, które powstały podczas wybuchu i opadły na Ziemię. Część z tych izotopów na na tyle długi okres połowicznego rozpadu, że powinny nadal być obecne w osadach z przełomu dewonu i karbonu. Takim pierwiastkiem jest np. pluton-244. Jego znalezienie w osadach z tego okresu byłoby silnym poparciem hipotezy Fielda.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy korzystający z Very Large Telescope (VLT) Europejskiego Obserwatorium Południowego poinformowali o... zniknięciu masywnej niestabilnej gwiazdy znajdującej się w jednej z galaktyk karłowatych. Naukowcy sądzą, że gwiazda stała się mniej jasna i przesłonił ją pył. Inna możliwa interpretacja jest taka, zapadła się tworząc czarną dziurę, bez stworzenia supernowej. Jeśli się to potwierdzi, będzie to pierwsza bezpośrednia obserwacja tak dużej gwiazdy kończącej życie w taki sposób, mówi doktorant Andrew Allan z Trinity College Dublin.
      W latach 2001–2011 różne grupy astronomów obserwowały w Galaktyce Kinman niezwykłą masywną gwiazdę. Wielokrotne obserwacje potwierdziły, że znajduje się ona na ostatnich etapach ewolucji. Allan i prowadzony przez niego międzynarodowy zespół naukowy z Irlandii, Chile i USA chcieli więcej dowiedzieć się o życiu masywnych gwiazd. Gdy jednak w 2019 roku skierowali VLT na gwiazdę, tej nie było tam, gdzie spodziewali się ją znaleźć.
      Galaktyka karłowata Kinman znajduje się w odległości około 75 milionów lat świetlnych od Ziemi w Konstelacji Wodnika. To zbyt duża odległość, by można było obserwować pojedyncze gwiazdy. Jednak możliwe jest odkrycie sygnatur niektórych z nich. Przez 10 lat kolejni astronomowie widzieli dowody, że znajduje się w niej gwiazda zmienna typu S Doradus. Tego typu gwiazdy są bardzo niestabilne, są ostatnim etapem życia gwiazd, których początkowa masa jest co najmniej 85 razy większa od masy Słońca. Żyją krótko i są niezwykle jasne. Gwiazda z Kinmana była 2,5 miliona razy jaśniejsza od Słońca.
      Allan i jego zespół stwierdzili, że gwiazda zniknęła. Byłoby czymś niezwykłym, gdyby tak masywna gwiazda zniknęła i nie pozostałaby po niej jasna supernowa, przyznaje Allan. Naukowcy zaczęli szukać gwiazdy. Wykorzystali w tym celu VLT oraz spektrograf ESPRESSO. Nic nie znaleźli. Użyli również instrumentu X-shooter. I dalej nic. Następnie zabrali się za analizę wieloletnich danych pochodzących z różnych źródeł.
      Dane pokazały, że w Galaktyce Kinman doszło do okresu intensywnych rozbłysków, które zakończyły się po roku 2011. Wiadomo, że gwiazdy zmienne typu S Doradus mogą pod sam koniec życia doświadczać silnych rozbłysków i znacznej utraty masy, a po tym procesie ich jasność dramatycznie spada.
      Naukowcy proponują dwa wyjaśnienia tego zjawiska oraz braku supernowej. Według pierwszego scenariusza po serii rozbłysków i utracie masy gwiazda znacznie straciła na jasności i może być częściowo przesłonięta pyłem. Drugie wyjaśnienie mówi o zapadnięciu się gwiazdy i powstaniu czarnej dziury. To byłoby niezwykłe, gdyż zgodnie z obowiązującymi obecnie teoriami, większość masywnych gwiazd kończy życie jako supernowa.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Niezwykły sygnał, zauważony w falach grawitacyjnych, rzuca nowe światło na „lukę masy” pomiędzy gwiazdami neutronowymi, a czarnymi dziurami. Naukowcy od kilkudziesięciu lat nie wiedzą, czy i co znajduje się pomiędzy tymi obiektami. Teraz mają dowód, że coś tam jest.
      Gdy najbardziej masywne gwiazdy kończą życie, zapadają się pod wpływem własnej grawitacji i powstaje czarna dziura. Gdy jednak umierająca gwiazda jest mniej masywna, wybucha jako supernowa i pozostaje po niej gęste jądro – gwiazda neutronowa.
      Od dziesięcioleci wiemy, że najbardziej masywne gwiazdy neutronowe mają masę nie większą niż 2,5 masy Słońca, a najmniej masywne czarne dziury charakteryzują się masą około 5 mas Słońca. Powstaje więc pytanie, co jest pomiędzy tymi masami.
      W ubiegłym roku informowaliśmy, że wykrywacz fal grawitacyjnych LIGO, zarejestrował wszystko, czego od niego oczekiwano: zderzenie dwóch czarnych dziur, zderzenie dwóch gwiazd neutronowych oraz wchłonięcie gwiazdy neutronowej przez czarną dziurę. I właśnie to ostatnie wydarzenie, do którego doszło około 800 milionów lat temu, może rzucić nieco światła na „lukę masy”.
      Jak bowiem czytamy na łamach najnowszego numeru The Astrophysical Journal Letters, zarejestrowany sygnał, oznaczony jako GW190814, pochodził z połączenia czarnej dziury o masie 23 mas Słońca (22,2–24,3 M☉) z obiektem o masie 2,6 mas Słońca (2,50–2,67 M⊙). W wyniku tego procesu powstały fale grawitacyjne, które 800 milionów lat później zarejestrowaliśmy na Ziemi.
      Różnica mas pomiędzy obiektami, wynosząca aż 9:1 jest największą różnicą zaobserwowaną dotychczas podczas badania fal grawitacyjnych. Jednak najbardziej interesująca jest masa lżejszego z obiektów. W tym wypadku nie wiemy, czy lżejszy obiekt to gwiazda neutronowa czy czarna dziura. To wciąż tajemnica. Zbadanie, w jaki sposób powstają takie układy może zmienić nasze rozumienie ewolucji gwiazd, mówi doktor Christopher Berry z Institute for Gravitational Research University of Glasgow, którego naukowcy odegrali kluczową rolę w analizie danych.
      Od dziesięcioleci czekamy na rozwiązanie tej zagadki. Nie wiemy, czy ten obiekt to najbardziej masywna gwiazda neutronowa czy najmniej masywna czarna dziura. Tak czy inaczej jest to rekordowy obiekt, mówi profesor Vicky Kalogera z Northwestern University, a profesor Patrick Brady, rzecznik prasowy eksperymentu LIGO, dodaje: to zmieni sposób postrzegania czarnych dziur i gwiazd neutronowych. Może się okazać, że „luka masy” nie istnieje, a wynika ona tylko z naszych ograniczonych możliwości obserwacyjnych. Potrzebujemy więcej czasu i kolejnych obserwacji, by to rozstrzygnąć.
      Naukowcy mają nadzieję, że kolejna rozbudowa możliwości obserwatorium LIGO, z obecnego Advanced LIGO do Advanced LIGO Plus, pozwoli na przeprowadzenie większej liczby bardziej szczegółowych obserwacji.

      « powrót do artykułu
×
×
  • Create New...