Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Genom mikroorganizmów i badania krwi pozwolą na zdiagnozowanie nowotworu?
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Dotychczas udało się zsekwencjonować genomy niewielu przedstawicieli gatunku Homo sapiens żyjących w Europie jednocześnie z neandertalczykami. Instytut Antropologii Ewolucyjnej im. Maxa Plancka poinformował, że jego naukowcy stali na czele międzynarodowej grupy badawczej, która zbadała najstarszy genom naszego gatunku. Materiał genetyczny został pobrany od siedmiu osób, które żyły pomiędzy 49 a 42 tysiące lat temu. Pochodził on ze stanowisk Ilsenhöhle w Ranis w Niemczech i Zlatý kůň w Czechach.
Materiał należał do niewielkiej grupy spokrewnionych ludzi. Oddzieliła się ona od populacji, która około 50 tysięcy lat temu opuściła Afrykę, by ostatecznie zasiedlić cały świat. Mimo, że grupa ta oddzieliła się wcześnie, to w jej genomie widać domieszkę genów neandertalskich wspólnych dla wszystkich ludzi spoza Afryki. Domieszka ta pojawiła się 45–49 tysięcy lat temu, a więc znacznie później, niż dotychczas przypuszczano.
Obecnie dysponujemy ograniczonym materiałem genetycznym najwcześniejszych H. sapiens zamieszkujących Europę. Z badań wiemy, że nasz gatunek przybył do Europy ponad 45 tysięcy lat temu i przez co najmniej 5 tysięcy lat mieszkał tutaj wspólnie z neandertalczykami. Wiemy też, że w Europie mieszkały co najmniej dwie genetycznie odmienne linie H. sapiens, reprezentowane przez szczątki znalezione w jaskiniach Zlatý kůň i Bacho Kiro w Bułgarii.
Jaskinie Ilsenhöhle w Niemczech i Zlatý kůň w Czechach to jedne z najważniejszych w Europie stanowisk ze szczątkami wczesnych H. sapiens na Starym Kontynencie. W czeskiej jaskini znaleziono kompletną czaszkę kobiety żyjącej 45 tysięcy lat temu. Udało się pobrać materiał genetyczny i przeprowadzić badania. Jednak brak kontekstu sprawił, że osoby tej nie można było połączyć z żadną wcześniej zidentyfikowaną grupą.
Z kolei w oddalonej o 230 kilometrów Ilsenhöhle występują ślady technokompleksu LRJ (Lincombian-Ranisian-Jerzmanowician) sprzed 45 tysięcy lat. LRJ to zespół europejskich kultur archeologicznych, do którego należy m.in. kultura jerzmanowicka. Przez długi czas technokompleks ten wiązano z neandertalczykami. Dopiero niedawne odkrycie licznych kości wskazało, że jest on dziełem H. sapiens. Jednak przeprowadzone wówczas badania mitochondrialnego DNA nie pozwoliły na określenie związku szczątków z Ranis z innymi szczątkami człowieka współczesnego.
Teraz uczeni zsekwencjonowli genom jądrowy szczątków z Ilsenhöhle i stwierdzili, że należały one do co najmniej sześciu osób. Rozmiary kości wskazują, że dwie z nich to niemowlęta. Trzy osoby były płci męskiej, trzy – żeńskiej. Wśród nich były matka i córka oraz inni krewni. Przeprowadzono też ponowną analizę czaszki kobiety z Czech. Ku naszemu zdumieniu odkryliśmy, że kobieta z jaskini Zlatý kůň jest krewną piątego lub szóstego stopnia dwóch osób z Ranis. To oznacza, że mieszkańcy czeskiej jaskini byli częścią tej samej szeroko rozumianej rodziny, co mieszkańcy jaskini w Ranis i prawdopodobnie również wytwarzali narzędzia należące do kompleksu LRJ, stwierdzają badacze.
Jedna z kości z Ranis zachowała się wyjątkowo dobrze, pozwalając na przeprowadzenie wysokiej jakości sekwencjonowania. Kość, należąca do mężczyzny oznaczonego jako Ranis13, i czaszka z jaskini Zlatý kůň, pozwoliły na uzyskanie najstarszego genomu człowieka współczesnego wysokiej jakości. Szczegółowe badania ujawniły, że osoby te miały ciemną skórę i włosy oraz brązowe oczy. Porównanie fragmentów DNA odziedziczonych od tego samego przodka pozwoliło na stwierdzenie, że początkowa populacja, do której należały osoby z jaskiń Ilsenhöhle i Zlatý kůň składała się z kilkuset osób. Rozproszyły się one po dużym terenie i nie pozostawiły śladów genetycznych ani u późniejszych Europejczyków, ani żadnych szeroko rozpowszechnionych populacji.
Członkowie populacji Zlatý kůň/Ranis mieszkali w Europie wraz z neandertalczykami. Jednak w ich genomie nie znaleziono śladów świeżej domieszki neandertalskich genów, a jedynie domieszkę starszą. Tymczasem współcześni H. sapiens posiadają w genomie również ślady bliższych współczesności przypadków mieszania się genów. Może to oznaczać, że linia Zlatý kůň/Ranis mogła przybyć do Europy inną drogą lub obszar ich pobytu nie nakładał się w znaczący sposób z terenami zamieszkanymi przez neandertalczyków.
Mimo, że Zlatý kůň/Ranis nie pozostawili po sobie śladów genetycznych u współczesnych ludzi, to łączą nas z nimi geny wprowadzone przez neandertalczyków przed 45–49 tysiącami lat. To z jednej strony wskazuje, że jeszcze wówczas na terenie Europy żyła spójna grupa migrantów z Afryki, z drugiej zaś – że każde znalezione poza Afryką szczątki H. sapiens starsze niż 50 tysięcy lat mogą nie być częścią tej populacji, która krzyżowała się z neandertalczykami, a której geny można znaleźć obecnie na całym świecie.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wstępne badania przeprowadzone na University of Pennsylvania wskazują, że prosty suplement diety może wspomóc terapię przeciwnowotworową CAR T. Uzyskane wyniki muszą zostać jeszcze potwierdzone w czasie badań klinicznych, jednak dane, zaprezentowane podczas 66th American Society of Hematology (ASH) Annual Meeting and Exposition wskazują, że naukowcy mogli wpaść na ślad ekonomicznej strategii wzmocnienia skutków terapii CAR T.
CAR T (chimeric antigen receptor T-cell therapy) wykorzystuje zmodyfikowane limfocyty T, które za pomocą technik biologii molekularnej i inżynierii genetycznej przeprogramowywane są ze swojego naturalnego działania – immunologicznego – na działanie przeciwnowotworowe. Tysiące pacjentów cierpiących na nowotwory hematologiczne zostało wyleczonych dzięki CAR T. Jednak wciąż nie we wszystkich przypadkach ona działa. Postanowiliśmy udoskonalić CAR T poprzez poprawienie działania limfocytów T za pomocą diety, a nie dalszej inżynierii genetycznej, mówi współautorka badań, doktor Shan Liu.
Naukowcy rozpoczęli od badania wpływu różnych diet, w tym diety ketogenicznej, diet o wysokiej zawartości błonnika, tłuszczu, białka, cholesterolu oraz diety kontrolnej na zdolności komórek CAR T do zwalczania nowotworu. W badaniach używali mysiego modelu chłoniaka rozlanego z dużych komórek B. Okazało się, że dieta ketogeniczna, najlepiej ze wszystkich testowanych diet, poprawiała kontrolowanie nowotworu i przeżywalność myszy. W toku dalszych badań uczeni stwierdzili, że głównym czynnikiem odpowiedzialnym za dobroczynny wpływ diety na poprawę leczenia CAR T był podwyższony poziom beta-hydroksymaślanu (BHB), metabolitu wytwarzanego przez wątrobę w reakcji na dietę ketogeniczną.
Wysunęliśmy hipotezę, że komórki CAR T preferują BHB jako źródło energii ponad standardowe cukry występujące w organizmie. Więc zwiększenie poziomu BHB wzmacnia komórki walczące z nowotworem, stwierdza współautor badań, doktor Puneeth Guruprasad.
Następnie zespół badawczy podawał BHB myszom z ludzkim modelem nowotworu leczonym CAR T i stwierdził, że u większości zwierząt doszło do zwalczenia guzów, a komórki CAR T były bardziej aktywne. Uczeni pobrali też krew pacjentów leczonych CAR T i zauważyli, że u tych osób, u których poziom BHB był wyższy, komórki CAR T były bardziej rozpowszechnione. Zbadano też krew zdrowych ochotników, którym wcześniej podawano suplement BHB. Badania te pokazały, że i u nich niezmodyfikowane limfocyty T pozyskiwały energię podobnie, jak limfocyty używane w CAR T.
W teorii więc suplementacja BHB powinna wspomagać pacjentów leczonych CAR T. Hipoteza ta jest badana podczas testów klinicznych prowadzonych właśnie w Penn Medicine’s Abramson Cancer Center. Mówimy o działaniu, które jest dość tanie i mało toksyczne, cieszy się mentor autorów badań, profesor mikrobiologii Maayan Levy.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Terapia przeciwnowotworowa, która zaprzęga układ immunologiczny do walki z rakiem, może spowodować, że pacjenci są narażeni na większe ryzyko ataku serca i udaru. Autorzy nowych badań – naukowcy z NYU Langone Health i Perlmutter Cancer Center – donoszą, że prawdopodobną przyczyną występowania tego efektu ubocznego może być fakt, iż terapia zaburza działanie układu odpornościowego w największych naczyniach krwionośnych serca.
Naukowcy skupili się na inhibitorach punktów kontrolnych układu odpornościowego. Leki te blokują punkty kontrolne – molekuły znajdujące się na powierzchni komórek – które nie dopuszczają do zbytniej aktywności układu odpornościowego, pojawienia się zbyt silnego stanu zapalnego. Niektóre nowotwory przejmują te punkty, by osłabić system obronny organizmu. Zatem blokując te punkty za pomocą leków można spowodować, że układ odpornościowy poradzi sobie z nowotworem.
Ten rodzaj terapii może jednak prowadzić do pojawienia się silnych stanów zapalnych w różnych organach. Z wcześniejszych badań wiadomo na przykład, że około 10% pacjentów z miażdżycą, po leczeniu inhibitorami, doświadcza ataku serca lub udaru.
Dotychczas nie znano jednak szczegółowego mechanizmu, który za tym stoi. Bo go poznać, badacze sprawdzili na poziomie komórkowym, jak inhibitory punktów kontrolnych współpracują z komórkami układu odpornościowego w płytkach krwi. Analiza genetyczna wykazała, że inhibitory i komórki odpornościowe biorą na cel dokładnie te same punkty kontrolne.
Nasze badania dostarczają bardziej precyzyjnych informacji na temat tego, w jaki sposób lek, który bierze na cel guzy nowotworowe, prowadzi do silniejszej reakcji immunologicznej w arteriach i zwiększa ryzyko chorób serca, mówi współautorka badań, doktor Chiara Giannarelli.
Badania wykazały też, że przyjmowanie inhibitorów punktów kontrolnych może utrudniać leczenie miażdżycy. To pokazuje, że nowotwór, cukrzyca i choroby serca nie istnieją w próżni i należy rozważyć, jak leczenie jednej choroby wpływa na inne. Teraz, gdy naukowcy lepiej rozumieją zależności pomiędzy wymienionymi chorobami, mogą rozpocząć pracę nad strategiami zmniejszenia ryzyka, cieszy się doktor Kathryn J. Moore.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Szpik kostny jest najważniejszym narządem krwiotwórczym w naszym organizmie. Jednak z wiekiem jego zdolność do produkcji zdrowych komórek krwi znacząco spada, co prowadzi do stanów zapalnych i chorób. Naukowcy z Instytutu Biomedycyny Molekularnej im. Maxa Plancka w Münster wykazali właśnie, że szpik w kościach czaszki jest wyjątkowy i z wiekiem... zwiększa produkcję krwi. A wyspecjalizowane naczynia krwionośne w szpiku kostnym czaszki wciąż rosną, napędzając produkcję krwinek.
W szpiku powstają komórki macierzyste hemopoezy (HSC), z których powstają komórki krwi i układu odpornościowego. Z wiekiem produkcja HSC zostaje zaburzona, powstaje coraz więcej komórek układu odpornościowego, spada ich jakość. W większości organów dochodzi do zmniejszenia sieci naczyń krwionośnych i pogorszenia ich funkcjonowania. Ważnymi oznakami starzenia się szpiku kostnego są też akumulacja tłuszczu, utrata masy kostnej, stany zapalne, pojawia się coraz więcej komórek mieloidalnych kosztem limfocytów.
Większość kości zawiera szpik, ale kości długie, takie jak kości ramion czy nóg oraz kości płaskie, jak kości czaszki, powstają w odmiennym procesie niż reszta kości. Naukowcy od dawna wykorzystują czaszki myszy – są one cienkie i niemal przezroczyste – do obserwowania aktywności komórek HSC. Zakładają przy tym, że mikrośrodowisko szpiku kostnego we wszystkich kościach jest takie same.
Naukowcy z Instytutu Maxa Plancka postanowili rzucić wyzwanie temu przekonaniu. Zadali sobie pytanie, czy jest ono prawdziwe i odkryli, że szpik kostny w czaszce ma wyjątkowe właściwości, zwiększa produkcję komórek krwiotwórczych w czasie dorosłego życia i jest wyjątkowo odporny na oznaki starzenia się. Odkrycia dokonano za pomocą specjalnej techniki wizualizacji, która pozwoliła obserwować całą sieć naczyń krwionośnych i wszystkie komórki szpiku kostnego w sklepieniu czaszki. Za pomocą metody immunufluorescencji in vivo naukowcy mogli porównywać zmiany w szpiku kostnym sklepienia czaszki, jakie zachodziły podczas starzenia się zwierzęcia.
Główny autor badań, Bong-Ihn Koh mówi, że jego zespół zauważył coś niespodziewanego gdy porównał czaszkę młodej dorosłej myszy z czaszką starej myszy w wieku 95 tygodni. W sklepieniu czaszki młodej dorosłej myszy jest niewiele szpiku i nie spodziewałem się, by jego ilość znacząco się zmieniła. Jednak gdy przyjrzałem się po raz pierwszy czaszkom starych myszy, ze zdumieniem zauważyłem, że kości sklepienia są całkowicie wypełnione szpikiem i pełne naczyń krwionośnych.
Kolejne badania wykazały, że to ciągły wzrost sieci naczyń krwionośnych napędza zwiększanie się ilości szpiku przez całe życie. Zwiększanie się ilości szpiku kostnego w miarę starzenia się, było czymś zaskakującym, ale jeszcze bardziej zaskakujący był wzrost sieci naczyń krwionośnych, mówi uczony. To jednak nie wszystko. Okazało się bowiem, że komórki HSC powstające w kościach czaszki były wysoce odporne na starzenie się i były zaskakująco zdrowe. Oznaki starzenia się, jaki obserwowaliśmy w szpiku kości udowej myszy – jak akumulacja tłuszczu, stan zapalny, zwiększone wytwarzanie komórek odpornościowych – były niemal nieobecne w szpiku kości czaszki tej samej myszy, dodaje Koh.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na Uniwersytecie Stanforda powstała rewolucyjna technika obrazowania struktur wewnątrz organizmu. Polega ona na uczynieniu skóry i innych tkanek... przezroczystymi. Można tego dokonać nakładając na skórę jeden z barwników spożywczych. Testy na zwierzętach wykazały, że proces jest odwracalny. Technika taka taka, jeśli sprawdzi się na ludziach, może mieć bardzo szerokie zastosowanie – od lokalizowania ran, poprzez monitorowanie chorób układu trawienia, po diagnostykę nowotworową.
Technologia ta może uczynić żyły lepiej widocznymi podczas pobierania krwi, ułatwić laserowe usuwanie tatuaży i pomagać we wczesnym wykrywaniu i leczeniu nowotworów, mówi Guosong Hong. Na przykład niektóre terapie wykorzystują lasery do usuwania komórek nowotworowych i przednowotworowych, ale ich działanie ograniczone jest do obszaru znajdującego się blisko powierzchni skóry. Ta technika może poprawić penetrację światła laserowego, dodaje.
Przyczyną, dla której nie możemy zajrzeć do wnętrza organizmu, jest rozpraszanie światła. Tłuszcze, płyny, białka, z których zbudowane są organizmy żywe, rozpraszają światło w różny sposób, powodując, że nie jest ono w stanie penetrować ich wnętrza, więc są dla nas nieprzezroczyste. Naukowcy ze Stanforda stwierdzili, że jeśli chcemy, by materiał biologiczny stał się przezroczysty, musimy spowodować, żeby wszystkie budujące go elementy rozpraszały światło w ten sam sposób. Innymi słowy, by miały taki sam współczynnik załamania. A opierając się na wiedzy z optyki stwierdzili, że barwniki najlepiej absorbują światło i mogą być najlepszym ośrodkiem, który spowoduje ujednolicenie współczynników załamania.
Szczególną uwagę zwrócili na tartrazynę czyli żółcień spożywczą 5, oznaczoną symbolem E102. Okazało się, że mieli rację. Po rozpuszczeniu w wodzie i zaabsorbowaniu przez tkanki, tartrazyna zapobiegała rozpraszaniu światła. Najpierw barwnik przetestowano na cienkich plastrach kurzej piersi. W miarę, jak stężenie tartrazyny rosło, zwiększał się współczynnik załamania światła w płynie znajdującym się w mięśniach. W końcu zwiększył się do tego stopnia, że był taki, jak w białkach budujących mięśnie. Plaster stał się przezroczysty.
Później zaczęto eksperymenty na myszach. Najpierw wtarli roztwór tartrazyny w skórę głowy, co pozwoliło im na obserwowanie naczyń krwionośnych. Później nałożyli go na brzuch, dzięki czemu mogli obserwować kurczenie się jelit i ruchy wywoływane oddychaniem oraz biciem serca. Technika pozwalała na obserwacje struktur wielkości mikrometrów, a nawet polepszyła obserwacje mikroskopowe. Po zmyciu tartrazyny ze skóry tkanki szybko wróciły do standardowego wyglądu. Nie zaobserwowano żadnych długoterminowych skutków nałożenia tartrazyny, a jej nadmiar został wydalony z organizmu w ciągu 48 godzin. Naukowcy podejrzewają, że wstrzyknięcie barwnika do tkanki pozwoli na obserwowanie jeszcze głębiej położonych struktur organizmu.
Badania, w ramach których dokonano tego potencjalnie przełomowego odkrycia, rozpoczęły się jako projekt, którego celem jest sprawdzenie, jak promieniowanie mikrofalowe wpływa na tkanki. Naukowcy przeanalizowali prace z dziedziny optyki z lat 70. i 80. ubiegłego wieku i znaleźli w nich dwa podstawowe narzędzia, które uznali za przydatne w swoich badaniach: matematyczne relacje Kramersa-Kroniga oraz model Lorentza. Te matematyczne narzędzia rozwijane są od dziesięcioleci, jednak nie używano ich w medycynie w taki sposób, jak podczas opisywanych badań.
Jeden z członków grupy badawczej zdał sobie sprawę, że te same zmiany, które czynią badane materiały przezroczystymi dla mikrofal, można zastosować dla światła widzialnego, co mogłyby być użyteczne w medycynie. Uczeni zamówili więc sięc silne barwniki i zaczęli dokładnie je analizować, szukając tego o idealnych właściwościach optycznych.
Nowatorskie podejście do problemu pozwoliło na dokonanie potencjalnie przełomowego odkrycia. O relacjach Kramersa-Kroniga uczy się każdy student optyki, w tym przypadku naukowcy wykorzystali tę wiedzę, do zbadania, jak silne barwniki mogą uczynić skórę przezroczystą. Podążyli więc w zupełnie nowym kierunku i wykorzystali znane od dziesięcioleci podstawy do stworzenia nowatorskiej technologii.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.