Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Mikroplastik powoduje zmiany w tkankach ryb

Recommended Posts

Chroniczna ekspozycja na włókna mikroplastiku może powodować poważne zmiany w skrzelach ryb i zwiększenie produkcji komórek jajowych u samic – ustalili naukowcy z amerykańskiego Duke Universty i chińskiego Zhejiang University of Technology.

Maleńkie włókna z poliestru, polipropylenu i innych rodzajów plastiku oddzielają się od syntetycznych tekstyliów i innych produktów dostępnych na rynku. Często trafiają do ścieków i akumulują się w oceanach, rzekach i jeziorach na całym świecie, przyczyniając się na niektórych obszarach do 90 proc. zanieczyszczeń mikroplastikiem.

Poprzednie badania pokazały, że wiele ryb je duże ilości włókien każdego dnia, ale dysponuje mechanizmami ochronnymi w jelitach, które niwelują uszkodzenia – powiedział David E. Hinton, wykładowca ekologii na Duke University. Jeśli jednak rozszerzy się badania do poziomu tkankowego i komórkowego, tak jak zrobiliśmy to my, można zaobserwować szkodliwe zmiany.

Jak zaznaczyła Melissa Chernick z Nicholas School of the Environment na Duke University, poza włóknami, które ryby wchłaniają, setki czy tysiące mikrowłókien przepływa przez ich skrzela i właśnie tam ich wpływ jest najbardziej niszczący.

W badaniu opisanym w PLOS ONE ryby ryżanki japońskie (Oryzias latipes) były narażone na wysoki poziom mikrowłókien w zbiornikach przez 21 dni. Obserwowano w ich oskrzelach posklejane błony, zwiększone wydzielanie śluzu, tętniaki oraz zmiany w komórkach nabłonkowych.

Zmiany były znaczące i było ich dużo. Każda miała wpływ na oddychanie – podkreśliła Chernick.

Choć narządy wewnętrzne mogą chronić się przed podobnymi uszkodzeniami, to kiedy włókna mikroplastiku znajdują się w jelitach, mogą wydzielać związki chemiczne, które trafiają do układu krwionośnego ryb. Naukowcy wciąż starają się wykryć te chemikalia i ich działanie. Jedna z kłopotliwych konsekwencji jest już znana – samice produkują więcej komórek jajowych, co sugeruje, że mikrowłókna działają jako związki endokrynnie czynne.

Na całym świecie w 2016 r. wyprodukowano prawie sześć ton syntetycznych włókien. Mikrowłókna odrywają się od tekstyliów w czasie prania i regularnego używania. Od jednej sztuki odzieży w czasie prania potrafi oddzielić się prawie 2 tys. mikroskopijnych włókien. Oczyszczalnie ścieków nie są przystosowane do ich wyłapywania, więc zanieczyszczenia akumulują się w środowisku.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Przy produkcji to się najwyraźniej miliony zgubiły. Sześć milionów ton włókien.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Europa ma prawdopodobnie jedne z najbardziej rozdrobnionych rzek na świecie. W samej Polsce jest 77 tys. sztucznych barier – średnio jedna na km rzeki czy strumyka – wynika z badań opublikowanych w Nature. Naukowcy komentują, że konstrukcje te szkodzą bioróżnorodności, a istnienie wielu z nich nie ma ekonomicznego sensu.
      W ramach projektu AMBER koordynowanego przez walijski Uniwersytet Swansea oszacowano, że w 36 europejskich krajach jest co najmniej 1,2 mln barier w nurcie wodnym rzeki. A to oznacza, że na 4 kilometry rzeki przypadają średnio 3 bariery zbudowane przez człowieka (0,74 bariery na 1 km). Polska jest powyżej europejskiej średniej: na 1 km strumyka przypada u nas 1 bariera. Rekordzistką jest jednak Holandia, gdzie na kilometr rzeki przypada prawie 20 barier.
      To zaskakująco wysokie liczby w stosunku do tego, co wiadomo było wcześniej. Ponad 60 proc. konstrukcji jest bowiem na tyle niewielkich (mają np. poniżej 2 m wysokości), że były dotąd pomijane w statystykach. W zakrojonych na dużą skalę badaniach opracowano Atlas Zapór AMBER – pierwszą kompleksową ogólnoeuropejską inwentaryzację zapór. Zarejestrowano tam tysiące dużych zapór, ale i znacznie większą liczbę niższych struktur, takich jak jazy, przepusty, brody, śluzy i rampy, które były dotąd niewidoczne w statystykach, a są głównymi sprawcami fragmentacji rzek. Wyniki badań – koordynowanych przez Barbarę Belletti – opublikowano w Nature. W ramach projektu powstała też aplikacja AMBER, w której każdy może pomóc dokumentować brakujące dotąd w statystykach bariery.
      Ponieważ policzenie wszystkich barier nie było fizycznie możliwe, naukowcy w badaniach terenowych przewędrowali wzdłuż 147 rzek (2,7 tys. km) i odnotowywali wszelkie sztuczne bariery w ich nurtach. Na tej podstawie oszacowano, ile barier może być w Europie.
      Jeden ze współautorów badania prof. Piotr Parasiewicz, kierownik Zakładu Rybactwa Rzecznego w Instytucie Rybactwa Śródlądowego im. S. Sakowicza zaznacza, że bariery te są ogromnym utrudnieniem w migracji ryb rzecznych nie tylko takich jak łososie, pstrągi, jesiotry, węgorze, ale także płotki czy leszcze. Za sprawą konstrukcji rzecznych gatunki te mają coraz trudniejsze warunki do przeżycia.
      To jednak nie jedyny minus. Jeśli na rzekach mamy tysiące barier, to zamieniamy nasze rzeki w stawy - mówi naukowiec. Powyżej bariery tworzy się bowiem często zalew, w którym woda płynie bardzo powoli, a lepiej radzą sobie tam organizmy charakterystycznie nie dla rzek, ale właśnie stawów. Z ryb są to choćby karpie czy leszcze. A to zwykle gatunki mniej wyspecjalizowane i bardziej pospolite.
      Bariery zmieniają też temperaturę wody (powyżej bariery jest często ona cieplejsza niż poniżej). A w dodatku blokują przepływ osadów i materii. A w poprzegradzanej rzece wolniej zachodzą procesy samooczyszczania.
      Ponadto z danych dostarczonych przez wolontariuszy w ramach aplikacji AMBER wynikło, że ponad 10 proc. europejskich barier jest nieużytecznych. Gdyby więc je usunąć, nie miałoby to żadnego ekonomicznego znaczenia. A to by oznaczało, że w Europie można by było rozebrać ok. 150 tys. barier bez żadnych strat ekonomicznych. Za to z zyskiem dla środowiska i dla ludzi – ocenia prof. Parasiewicz.
      Jednym z praktycznych wyników naszego projektu jest to, że Unia Europejska zadeklarowała w swoim Programie Bioróżnorodności do 2030 r., że udrożni 25 tys. km rzek – komentuje prof. Parasiewicz.
      AMBER otrzymał finansowanie z unijnego programu badań naukowych i innowacji "Horyzont 2020". Celem tego projektu jest zastosowanie zarządzania adaptacyjnego do eksploatacji zapór i innych barier w celu osiągnięcia bardziej zrównoważonego wykorzystania zasobów wodnych i skuteczniejszego przywrócenia ciągłości ekosystemów rzecznych. W ramach projektu opracowano narzędzia i symulacje, które mają pomóc przedsiębiorstwom wodociągowym i zarządcom rzek zmaksymalizować korzyści płynące z barier i zminimalizować ich wpływ na środowisko.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Niekiedy ośmiornice polują z rybami. Polowanie zbiorowe pozwala objąć działaniami większy obszar i zwiększa szanse na schwytanie ofiary. Okazuje się jednak, że gdy ośmiornice Octopus cyanea są niezadowolone z partnerów albo anulują współpracę, stosują uderzenia ramieniem. Naukowcy porównują to do ciosu pięścią i nazywają aktywnym przemieszczeniem (ang. active displacement) ryby.
      Czasowe sojusze między ośmiornicami i rybami rafowymi są dokumentowane od dziesięcioleci. Mogą one obejmować licznych uczestników z rożnych gatunków - podkreślają autorzy publikacji z pisma Ecology. Ośmiornice i ryby są znane ze zbiorowych polowań, podczas których czerpią korzyści z morfologii [budowy] i strategii polowań drugiej strony - podkreśla Eduardo Sampaio, doktorant z Uniwersytetu w Lizbonie oraz Instytutu Zachowania Zwierząt Maxa Plancka. Ponieważ dochodzi do połączenia sił licznych partnerów, tworzy się złożona sieć, w której zaangażowanie i odnoszone korzyści mogą nie być zrównoważone. Daje to początek różnym mechanizmom kontroli partnera.
      Czasem ryby i ośmiornice współpracują przez ponad godzinę, przy czym poszczególne gatunki zajmują różne pozycje. Ośmiornice ścigają ofiary przemykające wokół skał i chowające się w ciasnych przestrzeniach, ryby takie jak Parupeneus cyclostomus przeszukują dno, a inne patrolują kolumnę wody.
      Okazuje się jednak, że współpraca nie zawsze przebiega korzystnie dla ryb. Między 2018 a 2019 r. podczas nurkowania w okolicach Ejlatu w Izraelu i Al-Kusajr w Egipcie naukowcy zaobserwowali 8 incydentów, podczas których ośmiornice nagle uderzały partnera.
      Widząc to po raz pierwszy, zacząłem się śmiać i prawie zadławiłem się automatem oddechowym - opowiada Sampaio.
      Ryba może zostać zepchnięta na obrzeża grupy albo w ogóle dostaje się poza nią. Czasem po chwili wraca [...]. Sampaio dodaje, że choć wcześniej wiedziano, że ośmiornicom zdarza się uderzyć przy odpieraniu ataków pewnych ryb lub podczas walki o pokarm, po raz pierwszy opisano takie zachowanie w odniesieniu do polowania zbiorowego.
      W ramach studium zespół Sampaio obserwował interakcje między O. cyanea i różnymi rybami z Morza Czerwonego, np. Epinephelus fasciatus czy wariolami (Variola louti).
      Liczne obserwacje [...] sugerują, że uderzanie spełnia w relacjach międzygatunkowych konkretną funkcję. Z ekologicznego punktu widzenia dla ośmiornicy uderzanie ryby-partnera stanowi niewielki koszt energetyczny. W przypadku ryby tak już jednak nie jest.
      Naukowcy dywagują, że uderzanie ma trzymać ryby w ryzach, odpędzając je od ofiary, zmieniając ich pozycję w grupie, a nawet eliminując je z polowania.
      Czasem, w przypadkach gdy ryby nie wnoszą niczego do polowania i próbują, dosłownie, żerować na pracy innych, ośmiornica może uderzać z powodu zwykłego współzawodnictwa.
      Sampaio dodaje, że choć sojusze międzygatunkowe mogą być korzystne dla obu stron, nie oznacza to wcale, że nie zostaną zerwane, gdy nadarzy się okazja. Mimo współpracy, każdy z partnerów zawsze będzie próbował maksymalizować swoje korzyści. W sytuacji kiedy ofiara jest łatwo dostępna, ośmiornica wydaje się stosować uderzenia jako metodę kontrolowania zachowania partnera [...].
      W 2 przypadkach stwierdzono, że uderzanie miało miejsce nawet wtedy, gdy nie wydawało się mieć związku z próbą zapewnienia sobie ofiary. Możliwe są tu dwa scenariusze. W pierwszym ośmiornica całkowicie ignoruje korzyści i uderzanie jest złośliwym zachowaniem, które ma wytworzyć koszty dla ryb. W drugim scenariuszu uderzenie jest [natomiast] formą agresji z odroczonymi korzyściami, np. [...] karą; chcąc promować współpracę podczas przyszłych zdarzeń, ośmiornica uderza, ponosząc niewielkie koszty (koszt dla partnera jest już jednak znaczący).
      Jak jest naprawdę, wyjaśnić mogą dopiero kolejne badania. Szczegółowe analizy ilościowe polowań zbiorowych mogą pomóc w rozważeniu różnych pytań ekologicznych, np. kwestii istnienia uprzywilejowanych relacji między ośmiornicami i konkretnymi rybimi partnerami (w ocenie, czy niektóre gatunki bądź osobniki są uderzane częściej niż pozostałe).
      Chcemy zrozumieć, jak w kontekście całej grupy wcześniejsze interakcje między zwierzętami mogą prowadzić do uderzenia [danej] ryby i co się później zmienia.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Australijska państwowa agencja badawcza, CSIRO, szacuje, że na dnie oceanów zalega co najmniej 14 milionów ton mikroplastiku. To aż 25-krotnie więcej niż szacowano do tej pory. Jednak naukowcy z CSIRO są pewni swoich danych i mówią o przeprowadzeniu pierwszych globalnych szacunków zanieczyszczenia dna plastikiem.
      Naukowcy wykorzystali robota, który pobrał próbki z dna do głębokości nawet 3000 metrów. "Odkryliśmy, że głębie oceaniczne to miejsce, do którego trafia mikroplastik. Byliśmy zaskoczeni znajdując go w tak odległych miejscach", mówi główna autorka badań, Denise Hardesty. Autorzy badań, które opublikowano w recenzowanym Frontiers in Marine Science, zauważają, że obszary, gdzie po powierzchni pływa więcej plastiku, mają generalnie więcej mikroplastiku na dnie.
      Plastik, który trafia do oceanów, ulega degradacji, rozpada się i zamienia w mikroplastik. Ten zaś tonie i osiada na dnie, mówi Justine Barrett.
      W ramach badań robot zbierał osady w 6 miejscach położonych na głębokości od 1655 do 3062 metrów. Miejsca te znajdowały się w odległości od 288 do 356 kilometrów od wybrzeża Australii. Okazało się, że w 1 grami suchych osadów dennych znajduje się od 0 do 13,6 fragmentów mikroplastiku. Mediana wynosiła 1,26 kawałka mikroplastiku na 1 gram osadów. Na tej podstawie uczeni ostrożnie szacują, że dno oceaniczne pokryte jest 14 milionami ton plastiku.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy informuje o znalezieniu największej w historii liczbie kawałków mikroplastiku zalegającej na dnie morskim. W cienkiej warstwie osadów na Morzu Tyrreńskim naliczono aż 1,9 miliona fragmentów mikroplastiku na metr kwadratowy.
      Każdego roku do oceanów trafia ponad 10 milionów ton plastikowych odpadków. Plastik pływa po oceanach, jest wyrzucany na plaże, tworzy Wielką Pacyficzną Plamę Śmieci. Jedak te widoczne gołym okiem odpady to zaledwie 1% plastikowych śmieci, które każdego roku wprowadzamy do oceanów. Pozostałych 99% pnie widzimy, gdyż śmieci te znajdują się w głębokich warstwach wody.
      Naukowcy z Uniwersytetu w Manchesterze, brytyjskiego Narodowego Centrum Oceanografii, Uniwersytetu w Durham, francuskiego IFREMER oraz Uniwersytetu w Bremie poinformowali na łamach Science, że głębokie prądy oceaniczne transportują niewielkie fragmenty plastiku i włókna po całym dnie oceanicznym. Prądy te mogą też prowadzić do koncentracji olbrzymich ilości plastiku w osadach morskich, tworząc na dnie odpowiednik wielkich plam śmieci znanych z powierzchni oceanów.
      Niemal wszyscy słyszeli o plamach śmieci pływających po oceanach. Byliśmy jednak zaszokowani odkryciem, że głęboko na dnie morskim również dochodzi do takiej koncentracji plastiku. Odkryliśmy, że mikroplastik nie jest równomiernie rozpowszechniony na badanym przez nas obszarze. Potężne prądy morskie prowadzą do jego koncentracji w pewnych miejscach, mówi doktor Ian Kane, główny autor badań.
      Plastik jest transportowany na dno powoli przez prądy morskie lub też gwałtownie, przez prądy zawiesinowe. Gdy już znajdzie się na dnie jest unoszony przez prądy denne, które prowadzą do jego koncentracji w określonych obszarach. Prądy te niosą również tlen i składniki odżywcze, co oznacza, że miejsca koncentracji mikroplastiku znajdują się w ważnych obszarach dla ekosystemu. Tam plastik ten jest wchłaniany  przez organizmy morskie i wędruje w górę łańcucha pokarmowego, trafiając w końcu do naszych organizmów.
      Odkrycie, że na dnie morskim dochodzi do koncentracji mikroplastiku pozwoli z jednej strony zidentyfikować takie miejsca, z drugiej zaś ułatwi badania nad wpływem mikroplastiku na morskie ekosystemy.
      Niestety plastik stał się nowym typem osadów, który jest transportowany po dnie morskim wraz z piaskiem, mułem i składnikami odżywczymi, mówi doktor Florian Pohl z Durham University.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zwierzę sprzed 380 milionów lat, które pływało w oceanach i chodziło po lądzie jest zaginionym ogniwem ewolucji ludzkiej dłoni. Elpistostege watsoni miał 1,5 metra długości, ostre kły, płaską głowę, długi pysk i niewielkie okrągłe oczy, wyglądem przypominał połączenie rekina z jaszczurką. Jednak tym, co najbardziej zainteresowało kanadyjsko-australijski zespół paleontologów były jego płetwy.
      Wszystkie cztery płetwy tego stworzenia to pierwsza znana nam skamieniałość, na której widać przydatki, które z czasem stały się kośćmi palców i umożliwiły powstanie ludzkiej dłoni.
      Stworzenie miało cztery kończyny i w każdej z nich widoczne są niezwykłe kości, przypominające kości palców. Paleontolog profesor John Long z australijskiego Flinders University mówi, że to niezwykle ważne znalezisko. Ujawnia ono bardzo ważne informacje na temat ewolucji dłoni u kręgowców. To raz pierwszy mamy bezpośredni dowód na rozwój palców w płetwie. Te kości przypominają kości występujące w kończynach większości czworonogów, dodaje.
      Skamieniałość wykopano w Miguasha National Park na wybrzeżu Quebecu. To miejsce znane z występowania licznych skamieniałości z dewonu. Sam zaś dewon zwany jest epoką ryb. Odkrycie to przesuwa też moment powstania palców do ryb. Dotychczas sądzono, że pojawiły się one znacznie później u zwierząt lądowych. Palce zaczęły rozwijać się zatem bezpośrednio przed tym, gdy ryby zaczęły wychodzić na ląd.
      Wyewoluowanie ryb z czworonogi było jednym z najbardziej istotnych wydarzeń ewolucji. Czworonogi mogły opuścić wodę i opanować lądy. Jednak do tego konieczna była zamiana płetw w dłonie i stopy. Naukowcy badający ewolucję rybich płetw w kończyny czworonogów (w tym i człowieka) badają szczątki ryb i tetrapodów z okresu środkowego i górnego dewonu. Te formy przejściowe należą do rodziny Elpistostegidae. To zwierzęta przypominające czworonogi, ale zachowały wiele cech rybich. Jednym z nich jest słynny Tiktaalik z kanadyjskiej Arktyki. To słodkowodne stworzenie osiągało około 1 metra długości, ale dotychczas znamy tylko jego częściowy szkielet.
      Współautor badań Richard Cloutier z Quebec University mówi, że pojawienie się palców zbiega się z możliwością wsparcia przez ryby ciężaru ciała w płytkich wodach lub na lądzie. Podczas naszych badań zauważyliśmy również strukturę przypominającą kość ramienną. Również ona ma pewne cechy wspólne z kością ramienną wczesnych płazów, mówi uczony.
      Elpistostege to niekoniecznie nasz przodek, ale to najbliższa znana nam skamieniałość, która jest ogniwem pomiędzy rybami a czworonogami, dodaje.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...