Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Mikroplastik powoduje zmiany w tkankach ryb
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
W każdej próbce wody pobranych z 30 mazurskich jezior znaleziono mikroplastik, a jego ilość w wodzie była ściśle związana ze stopnie zurbanizowania linii brzegowej, informują naukowcy z Uniwersytetu w Białymstoku. Badania prowadzone były w ramach studiów doktoranckich Wojciecha Pola pd kierunkiem doktora habilitowanego Piotra Zielińskiego. Uzyskane wyniki pozwoliły na opracowanie uniwersalnego wskaźnika potencjalnego zagrożenia jezior mikroplastikiem na podstawie zurbanizowania linii brzegowej.
Z każdego badanego zbiornika, pobieraliśmy 30 litrów wody ze strefy pelagialu, czyli oddalonej od brzegu. Następnie próbka była zagęszczana, a potem badana w naszym wydziałowym laboratorium, gdzie z użyciem oleju rycynowego izolowaliśmy plastik, odfiltrowując go na filtrach z włókna szklanego (klasy GF/C). Następnie, już bezpośrednio na filtrach, plastik był zliczany a każda drobina opisywana pod kątem wielkości, koloru i formy. Stopień zanieczyszczenia został przez nas określony w liczbie fragmentów mikroplastiku na litr wody, wyjaśnia Wojciech Pol. W badanych jeziorach stwierdzono od 0,27 do 1,57 kawałków mikroplastiku na każdy litr wody.
Naukowcy badali też morfologię, cechy hydrologiczne oraz zasobność jezior z substancje odżywcze, analizowali zagospodarowanie zlewni, linię brzegową, natężenie turystyki i wydajność oczyszczalni ścieków.
Badacze zauważyli, że parametry jezior takie jak kształt, wielkość, głębokość czy bogactwo substancji odżywczych nie mają większego związku z zagęszczeniem plastiku. Istnieje jednak związek pomiędzy połączeniami jezior a ilością mikroplastiku. Im dalej jezioro znajduje się w ciągu zbiorników połączonych rzekami i kanałami, tym większe w nim zagęszczenie mikroplastiku.
Szczegóły pracy zostały opublikowane na łamach Science of The Total Environment.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Głowomłot tropikalny, gatunek ryby z rodziny młotowatych, wstrzymuje oddech by utrzymać temperaturę ciała podczas nurkowania na większe głębokości, gdzie poluje na kałamarnice. To było całkowite zaskoczenie. Nie spodziewaliśmy się, że rekiny wstrzymują oddech podczas nurkowania jak morskie ssaki. To niezwykłe zachowanie wspaniałego zwierzęcia, mówi główny autor badań Mark Royer z Shark Research Group na University of Hawai'i.
Skrzela są naturalnymi radiatorami, które szybko doprowadziłyby do wychłodzenia krwi, mięśni i organów, gdyby głowomłoty nie wstrzymywały oddechu. Głowomłot tropikalny życie w ciepłych wodach, ale zanurza się na głębokości, gdzie temperatura wody spada do 5 stopni Celsjusza. By efektywnie polować, jego ciało musi utrzymać ciepło.
Oczywistym jest, że oddychające powietrzem atmosferycznym ssaki wstrzymują oddech podczas nurkowania. Ale nie spodziewaliśmy się zaobserwować takiego zachowania u rekinów. To zachowanie wskazuje, że strategie polowania głowomłotów tropikalnych są podobne do strategii ssaków morskich, jak grindwal. Oba gatunki wyewoluowały do polowania na głęboko pływającą zdobycz i oba robią to wstrzymując na krótko oddech w tych fizycznie wymagających środowiskach.
Naukowcy z Hawajów dokonali niezwykłego odkrycia po przyczepieniu głowomłotom tropikalnym urządzeń, które mierzyły temperaturę mięśni, głębokość nurkowania, orientację ciała i poziom aktywności. Zauważyli, że mięśnie ryby utrzymywały temperaturę podczas nurkowania na duże głębokości, ale pod koniec każdego nurkowania, gdy rekin zbliżał się do powierzchni, gwałtownie się chłodziły. Model komputerowy zasugerował, że głowomłot musi przestawać oddychać, by zapobiec utraty temperatury przez skrzela. Dodatkowym dowodem był materiał wideo, pokazujący rekina z zamkniętymi skrzelami na głębokości 1044 metrów, podczas gdy przy powierzchni skrzela są szeroko otwarte. Nagłe ochłodzenie mięśni pod koniec nurkowania wskazuje, że rekiny zaczynają oddychać gdy wciąż znajdują się w dość zimnych wodach.
Wstrzymanie oddechu zapobiega utracie ciepła, ale odcina dopływ tlenu. Chociaż rekiny te wstrzymują oddech na 17 minut, to na największych głębokościach spędzają tylko 4 minuty, a następnie szybko wracają do cieplejszych dobrze napowietrzonych wód powierzchniowych. Odkrycie to pozwala nam zrozumieć, jak głowomot tropikalny jest w stanie nurkować na znaczne głębokości i zdobywać tam pożywienie. Pokazuje ono również, że ryba musi utrzymać delikatną równowagę fizjologiczną, mówi Royer.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Największe zwierzę, jakie kiedykolwiek żyło na Ziemi, pochłania olbrzymią liczbę najmniejszych kawałków plastiku, donoszą naukowcy z Uniwersytetu Stanforda. Płetwal błękitny i inne walenie wchłaniają więcej mikroplastiku, niż dotychczas sądzono. I niemal cały mikroplastik, jaki trafia do ich organizmów, pochodzi z ich pokarmu, a nie z wody, którą filtrują.
Uczeni ze Stanforda opublikowali na łamach Nature Communications wyniki badań, w czasie których skupili się na płetwalach błękitnych, płetwalach zwyczajnych oraz humbakach i ilości mikroplastiku, który trafia do ich organizmów. Naukowcy stwierdzili, że zwierzęta żerujące u wybrzeży Kalifornii pożywiają się głównie na głębokościach od 50 do 250 metrów. To jednocześnie ten obszar wód oceanicznych, w którym występuje najwięcej mikroplastiku. Na podstawie badań uczeni oszacowali, że każdego dnia przeciętny płetwal błękitny pochłania około 10 milionów kawałków mikroplastiku.
Płetwale błękitne znajdują się niżej w łańcuchu pokarmowym, niż można by wnioskować z rozmiarów ich ciała. To oznacza, że są bliżej oceanicznego plastiku. Łączy je z nim jedno kryl. Kryl pochłania plastik, płetwale zjadają kryl, mówi współautor badań Matthew Savoca.
Humbaki żywią się głównie rybami i pochłaniają codziennie około 200 000 kawałków mikroplastiku, chociaż te osobniki, które jedzą głównie kryl, spożywają dziennie do 1 miliona fragmentów. Z kolei płetwale zwyczajne, których dietę stanowi i kryl i ryby, mogą codziennie wchłaniać od 3 do 10 milionów kawałków mikroplastiku. Savoca zauważa, że w jeszcze gorszej sytuacji są te zwierzęta, które żerują w bardziej zanieczyszczonych wodach, jak np. Morze Śródziemne.
Co więcej, mikroplastik trafia do organizmów waleni głównie z pożywieniem, a nie z filtrowaną przez nie wodą. A to dodatkowy powód do zmartwień. Specjaliści obawiają się, że przez mikroplastik walenie mogą nie otrzymywać odpowiedniej ilości składników spożywczych. Musimy przeprowadzić dodatkowe badania, by dowiedzieć się, czy kryl, który wchłonął mikroplastik, nie ma przypadkiem mniej tłuszczu, podobnie zresztą nie wiemy, czy mikroplastik zjadany przez ryby nie powoduje, że są one mniej pożywne. Pochłaniając mikroplastik zwierzęta te mogą bowiem otrzymywać sygnał, że już się najadły, stwierdza główna autorka badań, Shirel Kahane-Rapport. Jeśli ryby i kryl są mniej tłuste, oznacza to, że każde polowanie – które związane jest z dużym wydatkiem energetycznym – przynosi waleniom mniej kalorii, co może być dla nich szkodliwe. Jeśli obszar, w którym polują, jest pełen żywności, ale jest to żywność uboga w składniki odżywcze, to polowanie jest marnowaniem energii, zjadają śmieci. To tak, jakby trenować do maratonu, odżywiając się w tym czasie żelkami, dodaje Kahane-Rapport.
Goldbogen Lab, w którym prowadzono badania, od ponad dekady zbiera i analizuje dane dotyczące waleni. Naukowcy badają jak wiele walenie jedzą, w jaki sposób się odżywiają, dlaczego są tak duże, jak pracują ich serca. Teraz zakres badań rozszerzono o mikroplastik, który jest coraz poważniejszym problemem w morzach i oceanach. Mamy tutaj zwierzęta, których populacja z olbrzymim trudem odradza się po okresie polowań, a które muszą mierzyć się z wieloma innymi problemami wywoływanymi przez człowieka, piszą autorzy badań.
Problem plastiku w morskim łańcuchu pokarmowym znany jest od 50 lat. Dotychczas mikroplastik został znaleziony w organizmach co najmniej 1000 morskich gatunków. Jego wpływ na walenie jest szczególnie niepokojący, gdyż zwierzęta ta pochłaniają jego olbrzymie ilości.
Uczeni będą chcieli zbadać, co dzieje się z mikroplastikiem trafiającym do organizmów waleni. Może on podrażniać żołądek. Może trafiać do krwioobiegu. A może jest w całości wydalany. Tego wciąż nie wiemy, przyznaje Kahane-Rapport. Naukowcy zbadają też, jak mikroplastik wpływa na wartość odżywczą gatunków kluczowych nie tylko dla waleni, ale i innych zwierząt ważnych z ekologicznego punktu widzenia.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W Odrze potwierdzono obecność glonu Prymnesium parvum N. Carter 1937. To on mógł zabić ryby w rzece, tak jak od 60 lat masowo zabija ryby w Chinach. Organizm ten występuje zwykle w wodach brachicznych – słonawych, będących mieszaniną wód słodkich i słonych – oraz wysoce zmineralizowanych wodach śródlądowych. To tzw. złota alga, nazwana tak od powodowanego przez nią złotawego zakwitu.
Prymnesium parvum to mikroskopijny (ok. 10 µm) wiciowy glon zaliczany do haptofitów. Po raz pierwszy został zidentyfikowany w 1937 roku w wodach słonawego stawu Bembridge na wyspie Wight. Charakteryzuje go duża tolerancja, może przebywać zarówno w wodach słonych jak i słodkich, ale najlepiej czuje się w wodach słonawych.
Już 2 lata po jego odkryciu zauważono, że wydziela on toksynę zabójczą dla ryb (ichtiotoksyna). W 1995 roku udało się ją wyizolować i zyskała ona nazwę prymnezyna. Obecnie wiemy, że zabija ona organizmy oddychające skrzelami. Toksyna zmienia przepuszczalność błon komórkowych i uszkadza skrzela.
Toksyny „złotej algi” atakują komórki skrzeli i je uszkadzają. Wkrótce skrzela zaczynają krwawić, a toksyny i inne związki chemiczne z wody dostają się do krwioobiegu ryby, uszkadzając jej organy wewnętrzne. Zwierzę zachowuje się tak, jakby w wodzie brakowało tlenu, wypływa na powierzchnię lub odpoczywa na płyciznach. To wszystko widzieliśmy w Odrze.
Niewielka ilość Prymnesium parvum nie jest szkodliwa, jednak gdy dojdzie do gwałtownej zmiany warunków środowiskowych, np. nagłego zasolenia wód słodkich, następuje masowe namnażanie się glonów, wydzielanie toksyny i śmierci ryb.
Zakwity P. parvum są udokumentowane na wschodniej półkuli pod początku XX wieku. Obecnie jednak glon ten jest rozpowszechniony na całym świecie, od Chin i Australii, przez Europę Zachodnią po USA. Jego migrację mogły ułatwić takie czynniki jak zmiany w zasoleniu wód, zmiany hydrologiczne oraz zmiany stężeń składników odżywczych w wodach.
Wydaje się, że pierwszym regionem półkuli zachodniej, w którym doszło do zakwitów P. parvum były południowo-środkowe regiony USA. W wyniku susz panujących na przełomie XX i XXI wieku doszło do zwiększenia zasolenia tamtejszych wód i pojawienia się pierwszych zakwitów. Zadomowienie się w tamtym regionie ułatwił zmniejszony w czasie suszy przepływ wód rzecznych do jezior. Rolę mogły odegrać też zmiany w dostępności składników odżywczych. Eksperymenty laboratoryjne wykazały bowiem, że toksyczność glonów rośnie gdy pojawia się nierównowaga pomiędzy stosunkiem azotu i potasu, a największa jest tam, gdzie ograniczona jest podaż potasu.
Badania laboratoryjne pokazują, że naturalnymi wrogami P. parvum mogą być wirusy, bakterie i zooplankton, jak niektóre orzęski, wrotki czy widłonogi.
Jeśli rzeczywiście ryby w Odrze zabił Prymnesium parvum to winny temu jest człowiek. Warunkiem koniecznym do masowego pojawienia się tego glonu i wydzielania toksyn było bowiem zwiększenie zasolenia wody w Odrze. A, jak wiemy nie od dzisiaj, takie zasolenie miało miejsce.
Warto mieć świadomość, że gatunki migrują. Mogą być transportowane przez np. przez ptaki, ssaki, lub statki, łódki, barki. Silne ingerencje w środowisko wodne, niszczenie naturalności rzek, traktowanie rzek i zbiorników wodnych jak śmietników, do których można wszystko wypuścić powoduje, że te ekosystemy chorują. W zdrowej rzece szanse na masowy rozwój takiego gatunku i wydzielenie zabójczych toksyn są znacznie mniejsze – stwierdza Instytut Ochrony Przyrody Polskiej Akademii Nauk.
W obliczu postępujących zmian klimatycznych musimy mieć świadomość, że jeśli radykalnie nie zmienimy naszego podejścia do środowiska naturalnego, nadal będziemy traktowali je utylitarnie i bezmyślnie w nie ingerowali, tego typu katastrofy będą miały miejsce coraz częściej.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Po raz pierwszy w historii w tkance płuc żywego człowieka znaleziono mikroplastik. O odkryciu poinformowali naukowcy z University of Hull oraz Castle Hill Hospital z Wielkiej Brytanii. To już kolejne w ostatnim czasie odkrycie dotyczące zanieczyszczenia ludzkiego organizmu plastikiem. Niedawno informowaliśmy o plastiku krążącym w ludzkiej krwi.
Ludzkość zanieczyściła plastikiem całą planetę. Jest on w glebie, wodzie i powietrzu. Naukowcy z University of Hull, podejrzewając, że mikroplastik mógł trafić do ludzkich płuc, podjęli współpracę z chirurgami z Castle Hill Hospital i ich pacjentami. Cierpiący na różne schorzenia pacjenci mieli zaplanowane zabiegi operacyjne na płucach i zgodzili się, by usunięta w ich trakcie tkanka została przekazana naukowcom do zbadani.
W sumie uczeni otrzymali 13 próbek tkanki płucnej. W 11 z nich stwierdzili obecność plastiku. Naukowcy zidentyfikowali 12 rodzajów plastiku obecnych w płucach. Większość z nich to plastik używany w życiu codziennym. Pochodził on z ubrań, opakowań i butelek. Jednak najbardziej zaskakujące były miejsca gromadzenia się mikroplastiku. Specjaliści spodziewali się znaleźć do w górnej części płuc. Tymczasem okazało się, że dociera on również do części dolnej. Kolejnym zaskoczeniem był fakt, że u mężczyzn koncentracja plastiku w płucach była większa niż u kobiet.
Jak w innych podobnych tego typu przypadkach, uczeni podkreślają, że wciąż nie wiemy, czy i jaki wpływ na organizm człowieka ma gromadzący się w nim mikroplastik. Dlatego też konieczne są dalsze badania tej kwestii.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.