Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Sztuczny atom zapewni stabilność komputerom kwantowym?
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Polska fizyk, Barbara Latacz, jest główną autorką badań, w ramach których naukowcy skupieni w projekcie BASE w CERN zaprezentowali pierwszy w historii kubit z antymaterii. Na łamach pisma Nature Latacz i jej koledzy opisali, jak przez niemal minutę utrzymywali w pułapce antyproton oscylujący pomiędzy dwoma stanami kwantowymi. Badania te pozwolą na znaczne udoskonalenie metod badania różnic między materią i antymaterią.
Proton i antyproton mogą przyjmować dwie wartości spinu. Pomiary zmiany tej wartości pozwalają na precyzyjne testowanie podstawowych praw przyrody, na przykład takich jak symetria CPT (ładunku, parzystości i czasu). Wskazuje ona, że materia i antymateria zachowują się identycznie, jednak jest to sprzeczne z obserwacjami, zgodnie z którymi materii we wszechświecie jest znacznie więcej niż antymaterii.
Spójne kontrolowane zmiany stanu kwantowego obserwowano dotychczas albo w dużych grupach cząstek, albo w przypadku pojedynczych uwięzionych jonów. Nie udało się tego jednak zrobić dla pojedynczego swobodnego momentu magnetycznego jądra, czyli np. spinu pojedynczego protonu. Teraz dokonali tego naukowcy z projektu BASE.
W ramach eksperymentu BASE badane są antyprotony dostarczane przez fabrykę antymaterii w CERN-ie. To jedyne miejsce na Ziemi, gdzie produkuje się niskoenergetyczne antyprotony. Są one przechowywane w elektromagnetycznych pułapkach Penninga i pojedynczo przesyłane do systemu pułapek, w których bada się m.in. ich spin.
Już wcześniej zespół BASE dowiódł, że wartości momentów magnetycznych protonów i antyprotonów są identyczne z dokładnością do kilku części na miliard. Najmniejsza różnica wskazywałaby na naruszenie symetrii CPT, a to oznaczałoby istnienie fizyki poza Modelem Standardowym. Dotychczas jednak badania były zakłócane przez fluktuacje pola magnetycznego. W ostatnim czasie naukowcom udało się znakomicie ulepszyć eksperyment i zapobiec utracie stanu kwantowego, dzięki czemu przez 50 sekund można było badać spin antyprotonu.
To pierwszy kubit zbudowany z antymaterii. Daje nam to możliwość zastosowania całego zestawu metod do precyzyjnego badania pojedynczych układów materii i antymaterii, mówi Stefan Ulmer z BASE. Uczony dodaje, że nowe osiągnięcie pozwoli na badanie momentu pędu antyprotonu nawet ze 100-krotnie większą precyzją, niż dotychczas.
Jeszcze bardziej precyzyjne pomiary będą możliwe dzięki projektowi BASE-STEP, o którego pierwszym udanym teście poinformowano w maju bieżącego roku. Umożliwia on bezpieczne transportowanie antyprotonów uzyskanych w CERN-ie do spokojniejszych środowisk i bardziej precyzyjnych laboratoriów. Gdy już system będzie w pełni działał, nasz nowy przenośny układ pułapek Penninga, napełniony antyprotonami z fabryki, będzie transportowany za pomocą BASE-STEP, co pozwoli na nawet 10-krotne wydłużenie czasu koherencji antyprotonu. To będzie przełom w badaniach nad materią barionową, mówi Barbara Latacz.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Fizycy z Uniwersytetu Oksfordzkiego pobili światowy rekord w precyzji kontrolowania pojedynczego kubitu. Uzyskali odsetek błędów wynoszący zaledwie 0,000015%, co oznacza, że ich kubit może popełnić błąd raz na 6,7 milionów operacji. O ile wiemy to najbardziej precyzyjne operacje z udziałem kubitów, jakie kiedykolwiek wykonano. To ważny krok w kierunku budowy praktycznego komputera kwantowego, który zmierzy się z prawdziwymi problemami, mówi współautor badań, profesor David Lucas z Wydziału Fizyki Uniwersytetu Oksfordzkiego.
Użyteczne obliczenia prowadzone za pomocą komputerów kwantowych będą wymagały prowadzenia milionów operacji przez wiele kubitów. To oznacza, że jeśli odsetek błędów będzie zbyt wysoki, obliczenia staną się nieużyteczne. Oczywiście istnieją metody korekcji błędów, ale ich zastosowanie będzie wymagało zaangażowania kolejnych kubitów. Opracowana w Oksfordzie nowa metoda zmniejsza liczbę błędów, zatem zmniejsza liczbę wymaganych kubitów, a to oznacza, że zmniejsza rozmiary i koszt budowy samego komputera kwantowego.
Jeśli zmniejszymy liczbę błędów, możemy zmniejszyć moduł zajmujący się korektą błędów, a to będzie skutkowało mniejszym, tańszym, szybszym i bardziej wydajnym komputerem kwantowym. Ponadto techniki precyzyjnego kontrolowania pojedynczego kubity są przydatne w innych technologiach kwantowych, jak zegary czy czujniki kwantowe.
Bezprecedensowy poziom kontroli i precyzji został uzyskany podczas pracy z uwięzionym jonem wapnia. Był on kontrolowany za pomocą mikrofal. Taka metoda zapewnia większą stabilność niż kontrola za pomocą laserów, jest też od nich tańsza, bardziej stabilna i łatwiej można ją zintegrować w układach scalonych. Co więcej, eksperymenty prowadzono w temperaturze pokojowej i bez użycia ochronnego pola magnetycznego, co znakomicie upraszcza wymagania techniczne stawiane przed komputerem wykorzystującym tę metodę.
Mimo że osiągnięcie jest znaczące, przed ekspertami pracującymi nad komputerami kwantowymi wciąż stoją poważne wyzwania. Komputery kwantowe wymagają współpracy jedno- i dwukubitowych bramek logicznych. Obecnie odsetek błędów na dwukubitowych bramkach jest bardzo wysoki, wynosi około 1:2000. Zanim powstanie praktyczny komputer kwantowy trzeba będzie dokonać znaczącej redukcji tego odsetka.
Źródło: Single-qubit gates with errors at the 10−7 level, https://journals.aps.org/prl/accepted/10.1103/42w2-6ccy
« powrót do artykułu -
przez KopalniaWiedzy.pl
Orbitalny moment pędu (OAM) elektronu uważany jest za mniej interesującą jego właściwość, gdyż w ciałach stałych zazwyczaj ulega on osłabieniu w wyniku interakcji z otaczającym elektron materiałem. Naukowcy z Centrum Badawczego Jülich (Forschungszentrum Jülich) wykazali właśnie, że w niektórych kryształach nie tylko zostaje on zachowany, ale można go też kontrolować. Jest to możliwe dzięki chiralności struktury krystalicznej. A odkrycie może doprowadzić do stworzenia nowej klasy urządzeń elektronicznych o wyjątkowej odporności na zakłócenia i dużej efektywności energetycznej.
Główną właściwością elektronu wykorzystywaną w klasycznej elektronice jest jego ładunek elektryczny. Nowoczesne technologie – jak technologie kwantowe czy spintronika – korzystają ze spinu elektronu. Jak jednak wynika z badań uczonych z Jülich, przyszłością elektroniki może być też orbitalny moment pędu, który opisuje, w jaki sposób elektron porusza się w atomie. W ten sposób może narodzić się orbitronika, która uzupełni i poszerzy możliwości, jakie dają nam elektronika i spintronika.
Przez dekady spin był uznawany za kluczowy parametr nowych technologii. Jednak orbitalny moment pędu również ma wielki potencjał jako nośnik informacji i jest przy tym znacznie bardziej stabilny, wyjaśnia doktor Christian Tusche z Instututu Petera Grünberga w Centrum Badawczym Jülich.
Jak już wspomnieliśmy, OAM jest rzadko obserwowany w kryształach, gdyż jest zwykle w nich tłumiony. Jednak naukowcy z Niemiec, we współpracy z kolegami z Tajwanu, USA, Włoch i Japonii wykazali właśnie, że w materiałach chiralnych, jak badany przez nich monokrzemek kobaltu (CoSi), sytuacja jest inna. Nasze badani pokazują, że struktura takiego kryształu bezpośrednio wpływa na moment pędu elektronu w sposób, który możemy bezpośrednio mierzyć. To otwiera nowe możliwości w dziedzinie badań materiałowych i przetwarzania informacji, dodaje fizyk eksperymentalny doktor Ying-Jiun Chen.
W przyszłości informacja może być przechowywana i przekazywane nie tylko poprzez ładunek i spin elektronu, ale również przez kierunek i orientację jego orbitalnego momentu pędu. Użycie OAM jako nośnika informacji wydaje się przekonujące. Można też będzie wykorzystać kołowo spolaryzowane światło do selektywnego wpływania na chiralność kryształów i uzyskania w ten sposób kontrolowanego światłem niemechanicznego przełącznika, alternatywy dla tranzystora. Co więcej połączenie OAM i spinu może pozwolić na zintegrowanie orbitroniki i spintroniki w hybrydowych maszynach kwantowych, stwierdza profesor Claus Michael Schneider, dyrektor Instytutu Petera Grünberga.
Źródło: Orbital Topology of Chiral Crystals for Orbitronics
« powrót do artykułu -
przez KopalniaWiedzy.pl
We Wrocławskim Centrum Sieciowo-Superkomputerowym Politechniki Wrocławskiej uruchomiono pierwszy w Polsce i Europie Środkowo-Wschodniej komputer kwantowy, który wykorzystuje kubity nadprzewodzące w niskiej temperaturze. Maszyna Odra 5 została zbudowana przez firmę IQM Quantum Computers. Posłuży do badań w dziedzinie informatyki, dzięki niej powstaną nowe specjalizacje, a docelowo program studiów w dziedzinie informatyki kwantowej.
Odra 5 korzysta z 5 kubitów. Waży 1,5 tony i ma 3 metry wysokości. Zwisający w sufitu metalowy walec otacza kriostat, który utrzymuje temperaturę roboczą procesora wynoszącą 10 milikelwinów (-273,14 stopnia Celsjusza).
Rektor Politechniki Wrocławskiej, profesor Arkadiusz Wójs przypomniał, że sam jest fizykiem kwantowym i zajmował się teoretycznymi obliczeniami na tym polu. Idea, żeby w ten sposób prowadzić obliczenia, nie jest taka stara, bo to lata 80. XX w., a teraz minęło kilka dekad i na Politechnice Wrocławskiej mamy pierwszy komputer kwantowy nie tylko w Polsce, ale też
w tej części Europy. Oby się po latach okazało, że to start nowej ery obliczeń kwantowych, stwierdził rektor podczas uroczystego uruchomienia Odry 5.
Uruchomienie komputera kwantowego to ważna chwila dla Wydziału Informatyki i Telekomunikacji Politechniki Wrocławskiej. Jego dziekan, profesor Andrzej Kucharski, zauważył, że maszyna otwiera nowe możliwości badawcze, a w przyszłości rozważamy również uruchomienie specjalnego kierunku poświęconego informatyce kwantowej. Powstało już nowe koło naukowe związane z kwestią obliczeń kwantowych, a jego utworzenie spotkało się z ogromnym zainteresowaniem ze strony studentów. Mamy niepowtarzalną okazję znalezienia się w awangardzie jeśli chodzi o badania i naukę w tym zakresie i mam nadzieję, że to wykorzystamy.
Odra 5 będzie współpracowała z czołowymi ośrodkami obliczeń kwantowych. Dzięki niej Politechnika Wrocławska zyskała też dostęp do 20- i ponad 50-kubitowych komputerów kwantowych stojących w centrum firmy IQM w Finlandii.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W ostatnim półwieczu producenci komputerów dokonali olbrzymich postępów pod względem miniaturyzacji i wydajności układów scalonych. Wciąż jednak bazują one na krzemie i w miarę zbliżania się do fizycznych granic wykorzystywania tego materiału, miniaturyzacja staje się coraz trudniejsza. Nad rozwiązaniem tego problemu pracują setki naukowców na całym świecie. Jest wśród nich profesor King Wang z University of Miami, który wraz z kolegami z kilku amerykańskich uczelni ogłosił powstanie obiecującej molekuły, która może stać się podstawą do budowy molekularnego komputera.
Na łamach Journal of American Chemical Society uczeni zaprezentowali najlepiej przewodzącą prąd cząsteczkę organiczną. Co więcej, składa się ona z węgla, siarki i azotu, a więc powszechnie dostępnych pierwiastków. Dotychczas żadna molekuła nie pozwala na tworzenie elektroniki bez olbrzymich strat. Tutaj mamy pierwszą molekułą, która przewodzi prąd na dystansie dziesiątków nanometrów bez żadnej straty energii, zapewnia Wang. Uczeni są pewni swego. Testy i sprawdzanie molekuły pod wszelkimi możliwymi kątami trwały przez ponad dwa lata.
Zdolność cząsteczek do przewodzenia elektronów wykładniczo zmniejsza się wraz ze wzrostem rozmiarów molekuły. Tym, co jest unikatowe w naszej molekule, jest fakt, że elektrony mogą przemieszczać się przez nie bez straty energii. Teoretycznie jest to wiec najlepszy materiał do przewodzenia elektronów. Pozwoli on nie tylko zmniejszyć rozmiary elektroniki w przyszłości, ale jego struktura umożliwi stworzenie komputerów funkcjonujących tak, jak nie jest to możliwe w przypadku materiałów opartych na krzemie, dodaje Wang.
Nowa molekuła może posłużyć do budowy molekularnych komputerów kwantowych. Niezwykle wysokie przewodnictwo naszej cząsteczki to rezultat intrygującej interakcji spinów elektronów na obu końcach molekuły. W przyszłości taki system molekularny może pełnić rolę kubitu, podstawowej jednostki obliczeniowej komputerów kwantowych, cieszy się uczony.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.