Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Psy pomagają ludziom w wielu zadaniach. Wygląda na to, że ich lista wydłuży się o kolejną pozycję, gdyż psi detektywi są w stanie wywęszyć wywoływane przez bakterie zielenienie cytrusów tygodnie, a nawet lata przed pojawieniem się objawów choroby na liściach i korzeniach.

Zielenienie cytrusów (znane też pod chińską nazwą huánglóngbìng, HLB) zaatakowało sady pomarańczy, cytryn i grejpfrutów na Florydzie, w Kalifornii i Teksasie. Zielenienie cytrusów jest powodowane przez bakterie Candidatus Liberibacter spp. Przenoszą je żerujące na drzewkach miodówki - Diaphorina citri i Trioza erytreae. Liście zainfekowanego drzewka pokrywają się plamami i żółkną. Gałęzie i system korzeniowy obumierają.

Wykorzystywana technologia ma tysiące lat - to psi nos. Po prostu wytresowaliśmy psy, by polowały na nową zdobycz: bakterie, które wywołują chorobę upraw cytrusów - opowiada Timothy Gottwald, badacz z amerykańskiego Departamentu Rolnictwa.

Autorzy raportu z pisma Proceedings of National Academies of Sciences podkreślają, że psi detektywi są szybsi, tańsi i dokładniejsi od ludzi zbierających setki liści do analizy laboratoryjnej.

Naukowcy tresowali 10 psów. Miały one wykrywać patogen Candidatus Liberibacter asiaticus (CLas). Jak napisano w artykule, czworonogi cechowała bardzo wysoka trafność, czułość oraz specyficzność.

W jednym z eksperymentów, prowadzonym w gaju grejpfrutowym w Teksasie, odróżniając świeżo zainfekowane i zdrowe drzewka, wytresowane psy osiągnęły aż 95% trafność. Tymczasem testy DNA wykryły mniej niż 70% zainfekowanych roślin. Im szybciej wykryje się chorobę, tym większe szanse na zahamowanie epidemii.

Widuje się psy pracujące na lotniskach, wykrywające narkotyki i materiały wybuchowe. Może wkrótce ujrzymy jest pracujące na większej liczbie farm.

 

 


« powrót do artykułu

Share this post


Link to post
Share on other sites

Ciekawy jest też temat wykorzystania psów do wykrywania chorób u ludzi. Psi węch jest fascynujący

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Nadużywanie antybiotyków, duże zagęszczenie zwierząt i utrata bioróżnorodności zwiększają ryzyko przejścia zwierzęcych patogenów na ludzi. Międzynarodowy zespół naukowy, pracujący pod kierunkiem specjalistów z Uniwersytetów w Bath i Sheffield przeanalizował ewolucję bakterii Campylobacter jejuni. To patogen bydła, który jest jedną z głównych przyczyn zakażeń przewodu pokarmowego w bogatych krajach.
      Ludzie zarażają się Campylobacter spożywając zanieczyszczone mięso. Bakteria powoduje u ludzi krwawe biegunki i chociaż nie jest tak niebezpieczna jak cholera czy E. coli to u osób z innymi chorobami może dawać niebezpieczne powikłania i pozostawiać długotrwałe uszkodzenia. Szacuje się, że 1 na 7 osób zarazi się Campylobacter w ciągu życia, a liczba zakażeń tą bakterią jest trzykrotnie większa niż łączna liczba zakażeń E. coli, Salmonellą i listerią.
      Campylobacter przenoszona jest w odchodach bydła, świń, drobiu i dzikich zwierząt. Jest ona obecna w odchodach 20% bydła hodowlanego, a jako, że hodowcy powszechnie używają antybiotyków, bakteria zyskała na nie oporność.
      Zespół naukowy z Wielkiej Brytanii, USA i Kanady przeanalizował ewolucję tej bakterii i poinformował na łamach PNAS o wynikach swoich badań. Analizy genetyczne patogenu wykazały, że jego szczep zarażający bydło pojawił się w XX wieku jednocześnie z dramatycznym wzrostem liczby hodowlanego bydła. Autorzy twierdzą, że związane z intensyfikacją hodowli zmiany w diecie, anatomii i fizjologii krów spowodowały znaczny transfer genów pomiędzy wcześniejszym szczepem, a szczepem zarażającym bydło. Zmiany te pozwoliły bakterii na pokonanie bariery pomiędzy bydłem a ludźmi, przez co Campylobacter zaczęła infekować nasz gatunek. A intensywne rolnictwo, globalny handel i ciągłe transportowanie zwierząt oraz ich produktów, stworzyło idealne warunki do rozpowszechnienia się patogenu po świecie.
      Jak mówi profesor Sam Sheppard z University of Bath, na świecie jest około 1,5 miliarda sztuk bydła hodowlanego. Każda z nich wytwarza około 30 kilogramów odchodów dziennie. Jeśli tylko 20% z nich jest zarażonych Campylobacter to mamy gigantyczne zagrożenie dla zdrowia publicznego.
      Uczony przypomina, że w ciągu ostatnich kilku dekad mieliśmy do czynienia z wieloma bakteriami i wirusami, które przeszły z dzikich zwierząt na ludzi. HIV zaraziliśmy się od małp, H5N1 od ptaków, a COVID-19 od nietoperzy. Nasze badania pokazują, że zmiany środowiskowe i coraz większy kontakt ze zwierzętami hodowlanymi spowodował, że zarażamy się bakteriami również od nich. Sądzę, że to dzwonek alarmowy. Musimy opracować inne metody hodowlane, by zredukować ryzyko wybuchu epidemii w przyszłości.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z dwóch czołowych instytucji naukowych świata – MIT i Uniwersytetu Harvarda – zidentyfikowali konkretne typy komórek w nosie, płucach i jelitach, które są celem ataku koronawirusa SARS-CoV-2. Analiza baz danych RNA pozwoliła uczonym określić, w których z komórek naszego organizmu dochodzi do ekspresji dwóch protein potrzebnych wirusowych do zainfekowania komórki. Odkrycie może pomóc w opracowaniu nowych i przystosowaniu istniejących leków do walki z COVID-19.
      Niemal od samego początku epidemii wiemy, że koronawirus SARS-CoV-2 przyłącza się, za pomocą białka strukturalnego S, do obecnego na powierzchni ludzkich komórek receptora ACE2 (angiotensin-converting enzyme 2 – konwertaza angiotensyny 2). Po przyłączeniu inna proteina, TMPRSS2, pomaga aktywować białko S, umożliwiając wirusowi wniknięcie do komórki. Gdy tylko rola tych protein została biochemiczne potwierdzona, zaczęliśmy przeszukiwać bazy danych, by stwierdzić, gdzie występują geny odpowiedzialne za ekspresję tych protein, mówi jeden z autorów badań, Jose Ordovas-Montanes.
      Wiele z analizowanych danych pochodziło z laboratoriów skupionych wokół projektu Human Cell Atlas, którego celem jest skatalogowanie wzorców aktywności genów dla każdego rodzaju komórek obecnego w ludzkim organizmie. Naukowcy skupili się na analizie komórek z nosa, płuc i jelit, gdyż dotychczasowe dowody wskazują, że wirus może zainfekować każdy z tych narządów. Następnie uzyskane wyniki porównali z danymi z organów, które nie są infekowane przez SARS-CoV-2.
      Okazało się, że w jamie nosowej komórkami, w których dochodzi do ekspresji RNA zarówno dla ACE2 jak i TMPRSS2, są komórki kubkowe. To właśnie one wydzielają śluz. I są drugimi co do częstotliwości występowania komórkami nabłonka dróg oddechowych. Są one też obecne w jelicie cienkim, jelicie grubym i spojówce powieki górnej.
      Z kolei w płucach ekspresja RNA dla obu protein potrzebnych koronawirusowi do zaatakowania komórek zachodzi w pneumocytach typu 2. To komórki wyścielające pęcherzyki płucne i odpowiedzialne za ich otwarcie. Jeśli zaś chodzi u jelita, to do największej ekspresji RNA dla ACE2 i TMPRSS2 dochodzi w enterocytach, które – obok komórek kubkowych i komórek endokrynowych – budują nabłonek błony śluzowej jelita cienkiego.
      Być może to nie wszystko, ale z pewnością mamy teraz znacznie bardziej jasny obraz niż wcześniej. Możemy teraz stwierdzić, że w wymienionych typach komórek dochodzi do ekspresji obu tych typów receptorów, dodaje Ordovas-Montanes.
      Podczas swoich badań naukowcy zauważyli jeszcze jedną zaskakującą rzecz. Okazało się, że ekspresja genu ACE2 jest prawdopodobnie skorelowana z aktywacją genów, o których wiadomo, że są aktywowane przez interferon, czyli proteinę, którą organizm wytwarza w reakcji na infekcję wirusową. Chcąc zweryfikować to spostrzeżenie, naukowcy potraktowali komórki z jamy nosowej interferonem i okazało się, że rzeczywiście doszło do aktywizacji genu ACE2.
      Interferon pomaga zwalczać infekcję poprzez zaburzanie zdolności wirusa do replikacji i aktywowanie komórek układu odpornościowego. Uruchamia on też zestaw genów, który ułatwia komórkom walkę z infekcją. Obecne badania są pierwszymi, które wykazały zwiazek ACE2 z reakcją na interferon. Spostrzeżenie to sugeruje, że koronawirusy mogły wyewoluować tak, by wykorzystywać systemy obronne organizmu, przejmując niektóre proteiny i używając je do własnych celów. Ordovas-Montanes przypomina, że również inne wirusy wykorzystują geny aktywowane przez interferon by dostać się do wnętrza komórek.
      Interferon niesie ze sobą wiele korzyści, dlatego jest czasami używany do walki z infekcjami, np. podczas leczenia wirusowego zapalenia wątroby typu B i C. Jednak obecne odkrycie oznacza, że wykorzystanie interferonu do leczenia COVID-19 może być bardziej skomplikowane. Z jednej bowiem strony środek ten może stymulować geny, które pomagają komórkom zwalczać infekcje i przetrwać uszkodzenia wywołane przez wirusa, z drugiej zaś strony interferon może dostarczać wirusowi nowe cele ataku.
      Trudno jest w tej chwili jednoznacznie określić rolę interferonu w zwalczaniu nowego koronawirusa. Jedynym sposobem na zrozumienie jego działania jest przeprowadzenie ściśle kontrolowanych testów klinicznych, mówi drugi z autorów badań, Alex K. Shalek. Przypomnijmy, że interferon beta, w połączeniu z dwoma innymi środkami, jest jedną z 4 potencjalnych terapii antykoronawirusowych testowanych właśnie przez WHO.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Eksperci z organizacji charytatywnej Medical Detection Dogs (MDD), którzy mają na swoim koncie pionierskie badania dotyczące wykorzystania psów do wykrywania cukrzycy i malarii u ludzi, trenują teraz swoje psy, by wykrywały osoby chore na COVID-19. Tak wyszkolone psy mogłyby pomóc zidentyfikować chorych w miejscach publicznych i w ten sposób przyczynić się do powstrzymania epidemii.
      MDD nawiązała współpracę z London School of Hygiene & Tropical Medicine (LSHTM) oraz z Durham University. Powołany przez te organizacje zespół rozpoczyna intensywne tresurę psów, by sprawdzić, czy rzeczywiście są one w stanie wyczuć osobę zarażoną koronawirusem SARS-CoV-2. Jeśli projekt się powiedzie, to pierwsze psy mogą być gotowe do pracy już za sześć tygodni. Mogłyby one wskazywać wskazywać osoby, które powinny zostać poddane testom na obecność koronawirusa. Dzięki temu można by zaoszczędzić sporo czasu i pieniędzy oraz szybciej opanować epidemię.
      Profesor James Logan, dyrektor Departamentu Kontroli Chorób LSHTM i ARCTEC (Centre of Excellence for Entomology and Vector Control), stwierdził: nasze dotychczasowe badania wykazały, że psy z ekstremalnie dużą precyzją wykrywają zapach ludzi zarażonych malarią. Są dokładniejsze niż testy diagnostyczne zatwierdzone przez Światową Organizację Zdrowia.
      Uczony dodaje, że to dopiero początek badań nad związkiem zapachu i COVID-19. Nie wiemy jeszcze, czy COVID-19 ma jakiś specyficzny zapach. Wiemy jednak, że inne choroby układu oddechowego zmieniają zapach ludzkiego ciała. Jest więc szansa, że podobne zjawisko zachodzi w przypadku COVID. A jeśli tak, to psy będą mogły to wykryć. Możemy w ten sposób zdobyć kolejne narzędzie diagnostyczne, które zrewolucjonizuje walkę z COVID-19.
      Psy mające wyczuwać ludzi z COVID-19 będą ćwiczone dokładnie w taki sam sposób, jak ćwiczy się zwierzęta przygotowywane do wykrywania nowotworów, choroby Parkinsona czy infekcji bakteryjnych. Trening będzie przebiegał w pokoju kontrolnym, a zwierzęta na podstawie wielu próbek będą wskazywały, która pochodzi od osoby cierpiącej na COVID-19.
      Tak wytresowane psy mogłyby później pracować na lotniskach, w portach czy w innych miejscach publicznych.
      Celem naszych badań jest wykorzystanie psów do prowadzenia skriningu dowolnych osób, również tych, nie wykazujących objawów. Pies może wskazać, czy daną osobę należy oddać testom. Byłaby to szybka, efektywna i nieinwazyjne metoda dająca gwarancję, że testy będą wykonywane tylko tam, gdzie to konieczne, mówi doktor Claire Guest, dyrektor i współzałożyciel Medical Detection Dogs.
      Autorzy badań rozpoczęli publiczną zbiórkę funduszy na pokrycie kosztów treningu psów. Chcą w ciągu miesiąca zebrać milion funtów.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wydaje się, że spożywanie zbyt dużych ilości soli negatywnie wpływa na możliwość obrony organizmu przed bakteriami. Takie wnioski płyną z badań przeprowadzonych na myszach i 10 ochotnikach. Autorzy badań, Christian Kurts i jego zespół ze Szpitala Uniwersyteckiego w Bonn, wykazali, że myszy, w których diecie znajdowała się wysoka zawartość soli, gorzej radziły sobie z infekcją nerek spowodowaną przez E. coli oraz ogólnoustrojową infekcją Listeria monocytogenes. To bardzo zjadliwy patogen, wywołujący niebezpieczne zatrucia pokarmowe.
      Po badaniach na myszach rozpoczęto badania na 10 zdrowych ochotnikach w wieku 20–50 lat. Najpierw sprawdzono, jak w walce z bakteriami radzą sobie ich neutrofile. Następnie badani przez tydzień spożywali dodatkowo 6 gramów soli dziennie. Po tygodniu porównano działanie ich neutrofili. Okazało się, że w każdym przypadku radziły sobie one gorzej niż przed badaniem.
      Naukowcy nie sprawdzali, jak sól wpływa na zdolność organizmu do obrony przed wirusami.
      Światowa Organizacja Zdrowia (WHO) zaleca, by dzienna dawka spożywanej soli nie przekraczała 5 gramów dziennie. Tymczasem przeciętny Polak każdego dnia spożywa średnio 10 gramów soli.
      Naukowcy sądzą, że sól na dwa sposoby upośledza zdolność układu odpornościowego do walki z bakteriami. Po pierwsze, gdy spożywamy za dużo soli uwalniane są hormony, które pomagają ją wydalić. Wśród tych hormonów znajdują się glukokortykoidy, o których wiadomo, że tłumią układ odpornościowy. Ponadto niemieccy badacze zauważyli, że gdy mamy w organizmie dużo soli, w naszych nerkach gromadzi się mocznik, a ten zaburza pracę neutrofilów.
      Wyniki badań zostały opublikowane na łamach Science Translational Medicine.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Komórki macierzyste hemopoezy (ang. hemapoietic stem cell, HSC) wspierają odporność, zachowując pamięć wcześniejszych infekcji. Ustalenia te mogą mieć znaczący wpływ na przyszłe strategie szczepień, a także utorują drogę nowych metodom leczenia niedoborów odporności i nadreaktywnego układu odpornościowego.
      Jeszcze jakiś czas temu uważano, że HSC są niewyspecjalizowanymi komórkami, „ślepymi” na zewnętrzne sygnały, takie jak infekcje i że tylko ich wyspecjalizowane komórki potomne mogą wyczuć te sygnały i aktywować odpowiedź immunologiczną. Prace laboratorium prof. Michaela Sieweke'a i innych w ciągu ostatnich lat pokazały, że to nieprawda i że HSC mogą wykryć zewnętrzne czynniki, tak by na żądanie wyprodukować podtypy komórek odpornościowych do zwalczenia zakażenia.
      Pozostawało jednak pytanie odnośnie roli HSC w reagowaniu na powtarzające się epizody infekcyjne. Układ odpornościowy dysponuje pamięcią immunologiczną, która pozwala mu lepiej reagować na nawracające czynniki zakaźne. Badanie, którego wyniki ukazały się właśnie w piśmie Cell Stem Cell, wykazało centralną rolę, odgrywaną przez HSC w tej pamięci.
      Odkryliśmy, że HSC mogą napędzić szybszą i bardziej wydają odpowiedź immunologiczną, jeśli wcześniej były wystawiane na oddziaływanie lipopolisacharydu (LPS), bakteryjnej cząsteczki naśladującej infekcję [LPS to endotoksyna bakteryjna] - opowiada dr Sandrine Sarrazin z Insermu.
      Pierwsza ekspozycja na LPS powoduje, że na DNA komórek macierzystych, przy genach ważnych dla odpowiedzi immunologicznej, pojawiają się markery epigenetyczne. Podobnie jak zakładka do książki, makery DNA zapewniają, że geny te są łatwe do znalezienia, dostępne i łatwe do aktywacji, by uzyskać szybką reakcję na kolejne zakażenie przez podobny czynnik - dodaje Sieweke.
      Naukowcy odkryli, że opisywana pamięc epigenetyczna jest zależna od czynnika transkrypcyjnego C/EBPβ (czynnik ten odgrywa ważną rolę także w doraźnych reakcjach immunologicznych, ang. emergency immune response). Zespół ma nadzieję, że dzięki temu uda się opracować lepsze strategie szczepienia i dostrajania układu odpornościowego.
      Zdolność układu odpornościowego do śledzenia przeszłych infekcji i skuteczniejszego reagowania przy kolejnych spotkaniach [z tym samym patogenem] to podstawowa zasada, do której odwołują się szczepionki. Teraz, gdy znamy rolę spełnianą przez komórki macierzyste hemopoezy, możemy zoptymalizować strategie szczepienia. Mogą też powstać metody zwiększania odpowiedzi układu immunologicznego tam, gdzie jest ona zbyt mała i jej osłabiania tam, gdzie dochodzi do reakcji zbyt silnej, mówi profesor Michael Sieweke.

      « powrót do artykułu
×
×
  • Create New...