Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Bakteria rozłożona na części pierwsze

Rekomendowane odpowiedzi

Ekspertom z Uniwersytetu Kalifornijskiego udało się zajrzeć jeszcze głębiej do wnętrza komórki bakteryjnej. W najnowszym numerze czasopisma Science donoszą oni, że odpowiedzieli na kilka ważnych pytań na temat tzw. mikrokompartmentów - specyficznych "przedziałów" wewnątrz komórki, pełniących określone funkcje. Naukowcy z Kalifornii wierzą, że zablokowanie procesu tworzenia mikrokompartmentów mogłoby zapobiec infekcjom bakteryjnym. Są także przekonani, że ich odkrycie ułatwi w przyszłości modyfikowanie komórek bakteryjnych, przez co znajdzie zastosowanie w biotechnologii.

W badaniach, których wyniki opublikowano 22 lutego, po raz pierwszy udowodniono istniejącą od dawna hipotezę, że mikrokompartmenty są zamkniętymi trójwymiarowymi strukturami otoczonymi szczelną błoną. W środku każdego z tych przedziałów panują specyficzne warunki, odpowiednie dla zachodzących w nim reakcji. Umożliwia to przeprowadzanie wielu procesów, często zachodzących w skrajnie różnych warunkach, równocześnie we wnętrzu jednej komórki.

Aby bliżej zbadać ten fenomen, badacze skupili się na karboksysomie - najlepiej poznanym z mikrokompartmentów, przeprowadzającym reakcje wiązania dwutlenku węgla u bakterii samożywnych. Udowodniono, że zbudowany jest jak piłka futbolowa: składa się z sześciokątów i pięciokątów, graniczących ze sobą ścianami i tworzących niemal idealną geometrycznie sferę. Struktura ta jest niezwykle korzystna energetycznie, a do tego zapewnia wydajne przenoszenie obciążeń - nie bez powodu podobną strukturę wykazuje otoczka wielu wirusów, a nawet pojedyncze cząsteczki chemiczne zwane fullerenami. Należy jednak zaznaczyć, że mikrokompartmenty są zbudowane ze znacznie większej liczby cząsteczek - do zamknięcia pełnej sfery potrzeba ponad 3000 molekuł białka.

Już ponad dwa lata temu, w sierpniu 2005 roku, ten sam zespół dowiódł, że białko tworzące mikrokompartmenty tworzy sześciokątne struktury. Do niedawna sądzono, że otoczka takiego przedziału jest stworzona wyłącznie z sześciokątów, a miejsca pomiędzy nimi tworzą pory, przez które zachodzi przepływ do środka i na zewnątrz otoczki. Teraz jednak udowodniono, że struktura jest znacznie bardziej szczelna, a otwory w błonie są wypełnione przez białka tworzące symetryczny pięciokąt.

Zespół, prowadzony przez prof. Yeatesa, planuje teraz poprowadzić kolejne badania nad innymi typami mikrokompartmentów. Są one istotne z punktu widzenia medycyny, gdyż bakterie wytwarzają największą ich liczbę w czasie infekcji. Może to oznaczać, że zablokowanie powstawania tych struktur może być skuteczną metodą powstrzymania zakażeń bakteryjnych. Inne eksperymenty mają sprawdzić, w jaki sposób enzymy trafiają do mikrokompartmentu, jakie różnice występują w ich budowie oraz jak dokładnie zachodzi proces zamykania się tej struktury w trzech wymiarach.

Niektórzy naukowcy od dawna przypuszczali, że dojdzie do odkrycia tak złożonych struktur wewnątrz komórek bakteryjnych, gdyż dla działania wielu enzymów i równoczesnego zachodzenia przeciwstawnych procesów biochemicznych było konieczne rozdzielenie ich w przestrzeni. Z drugiej jednak strony wielu z nich jest zaskoczonych tym, jak bardzo skomplikowana jest budowa komórki bakteryjnej. W pewien sposób zaciera to różnice pomiędzy komórkami eukariotycznymi (charakterystycznymi dla organizmów wyższych) a prokariotycznymi (czyli występującymi u bakterii i archeanów).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Niektórzy naukowcy od dawna przypuszczali, że dojdzie do odkrycia tak złożonych struktur wewnątrz komórek bakteryjnych, gdyż dla działania wielu enzymów i równoczesnego zachodzenia przeciwstawnych procesów biochemicznych było konieczne rozdzielenie ich w przestrzeni. Z drugiej jednak strony wielu z nich jest zaskoczonych tym, jak bardzo skomplikowana jest budowa komórki bakteryjnej.

 

i to niby ewolucja , gra przypadków ?? a moze jest czynnik organizujący to wszystko, przewidywalny jak np. prawo fizyczne albo pole . (PM) 8)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Oczywiście, że jest taki czynnik. Nazywa się prostym oddziaływaniem hydrofobowym - samorzutnym zamykaniem się kulek tłuszczu w micele w środowisku wodnym.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Bierze się z prostych oddziaływań wody z substancjami hydrofobowymi, w czym problem?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Bierze się z prostych oddziaływań wody z substancjami hydrofobowymi, w czym problem?

 

Problem jest zawarty w słowach " prostych oddzaływań" - one usypiają świadomość , a tymczasem

w przyrodzie nic proste nie jest ,a wszystko ma wiele znaczeń , zastosowań a wszystkie są mistrzowsko zsynchronizowane - tylko czym?? i po co?? 8)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Tak, ja wiem, wszyscy wiemy, że chodzi o PM. Super.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Celowana terapia radionuklidowa (TRT – targeted radionuclide therapy) polega na podawaniu do krwi radiofarmaceutyków, które wędrują do komórek nowotworowych, a gdy znajdą się w guzie emitują cząstki alfa i beta, niszcząc tkankę nowotworową. Obecnie stosowane metody TRT zależą od obecności unikatowych receptorów na powierzchni komórek nowotworowych. Radiofarmaceutyki wiążą się z tymi właśnie receptorami.
      To z jednej strony zaleta, gdyż leki biorą na cel wyłącznie komórki nowotworowe, oszczędzając te zdrowe. Z drugiej strony wysoka heterogeniczność guza i zdolność komórek nowotworowych do szybkich mutacji powodują, że może dojść do zmiany receptorów, przez co TRT będzie nieskuteczna. Naukowcy z University of Cincinnati mają pomysł na rozwiązanie tego problemu i precyzyjne dostarczenie radionuklidów niezależnie od fenotypu receptorów komórek nowotworowych.
      Uczeni zmodyfikowali niepatogenną probiotyczną bakterię Escherichia coli Nissle (EcN) tak, by dochodziło na jej powierzchni do nadmiernej ekspresji receptora metali. Bakteria, które może zostać dostarczona bezpośrednio do guza, przyciąga następnie specyficzny dla siebie radiofarmaceutyk zawierający specjalny kompleks organiczny z terapeutycznym radioizotopem 67Cu.
      Tak długo, jak te zmodyfikowane bakterie pozostają w guzie, trafi do niego też radioaktywny metal. Niezależnie od tego, czy na powierzchni komórek nowotworowych znajdzie się receptor czy też nie, mówi główny autor badań, Nalinikanth Kotagiri. Co więcej, możliwe jest zastąpienie izotopu 67Cu przez 64Cu, dzięki czemu można dokładnie obrazować położenie bakterii wewnątrz guza metodą pozytonowej tomografii emisyjnej. Możemy bez problemu przełączać się między 64Cu a 67Cu by obrazować guza i gdy już to zrobimy, możemy wprowadzić kolejną molekułę w celu przeprowadzenia leczenia, zapewnia Kotagiri.
      Szczegóły badań zostały opisane na łamach Advanced Healthcare Materials.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Mutacje prowadzące do rozwoju nowotworów mogą być wywołane obecnością bakterii powszechnie występującej w naszych jelitach. Naukowcy z Hubrecht Institute i Princess Maxima Center w Utrechcie przeprowadzili eksperymenty laboratoryjne podczas których modelowe ludzkie jelita poddali działaniu jednego ze szczepów E. coli. Okazało się, że obecność bakterii wywoływała pronowotworowe zmiany w DNA. Takie same zmiany odkryto w DNA osób cierpiących na raka jelita grubego.
      To pierwsze badania, podczas których wykazano istnienie bezpośredniego związku pomiędzy obecnością bakterii zamieszkujących nasze ciało a pojawieniem się zmian genetycznych prowadzących do nowotworu.
      Jednym z gatunków bakterii, które mogą być dla nas szkodliwe, jest E. coli. Okazuje się, że jeden z jej szczepów jest „genotoksyczny”. Szczep ten wydziela związek chemiczny o nazwie kolibaktyna, który może uszkadzać DNA komórek naszego organizmu. Od dawna podejrzewano, że genotoksyczne E. coli, obecne u 20% dorosłych, może przyczyniać się do rozwoju nowotworów.
      Okazuje się, że te genotoksyczne E. coli można... kupić w sklepie. Na rynku obecne są probiotyki zawierające ten genotoksyczny szczep E. coli. Niektóre z tych probiotyków są nawet używane podczas testów klinicznych. Należy jeszcze raz dokładnie przebadać ten szczep. Mimo, że może on przynosić pewne krótkoterminowe korzyści, to probiotyki te mogą doprowadzić do rozwoju nowotworu dziesiątki lat po ich zażyciu, mówi Hans Clevers z Hubrecht Institute.
      Dotychczas nie było wiadomo, czy bakterie obecne w jelitach mogą prowadzić do kancerogennych mutacji w DNA. Holenderscy uczeni wykorzystali organoidy jelitowe. Organoidy to komórki hodowane w specjalnych trójwymiarowych środowiskach, tworzące miniaturowa narządy będące uproszczonymi modelami prawdziwych narządów w organizmie.
      Organoidy te zostały podane działaniu genotoksycznego szczepu E. coli. Po pięciu miesiącach naukowcy przeanalizowali DNA komórek organoidów i zbadali mutacje spowodowane przez bakterie.
      Uczeni stwierdzili, że genotoksyczna E. coli wywołuje dwa jednocześnie występujące rodzaje mutacji. Jedną z nich była zamiana adeniny (A) w którąkolwiek inną zasadę z DNA, a drugą była utrata pojedynczej adeniny z długiego łańcucha adenin. Jednocześnie, w obu mutacjach adenina pojawiała się po przeciwnej stronie podwójnej helisy, w odległości 3–4 par zasad od zmutowanego miejsca.
      Holendrzy odkryli też mechanizm działania kolibaktyny. Okazało się, że związek ten ma zdolność do przyłączania dwóch adenin w tym samym czasie i ich wzajemnego sieciowania (cross-link). To było jak ułożenie puzzli do końca. Wzorzec mutacji, jaki obserwowaliśmy podczas naszych badań można dobrze wyjaśnić strukturą chemiczną kolibaktyny, stwierdza Cayetano Pleguezuelos-Manzano.
      Gdy już poznali sposób działania kolibaktyny, postanowili sprawdzić, czy ślady tego oddziaływania można znaleźć u pacjentów. Naukowcy przeanalizowali mutacje w ponad 5000 guzach nowotworowych reprezentujących różne rodzaje nowotworów. Okazało się, że jeden rodzaj nowotworu zdecydowanie się tutaj wyróżnia. W ponad 5% guzów raka jelita grubego było widać wyraźne ślady takiej właśnie mutacji, podczas gdy w innych rodzajach nowotworów były one obecne w mniej niż 0,1% guzów, mówi Jens Puschhof. Ślady takie znaleziono w przypadku takich nowotworów jak nowotwory jamy ustnej czy pęcherza. Wiadomo, że E. coli może infekować te organy. Chcemy zbadać, czy genotoksyczność tej bakterii może wpływać na rozwój nowotworów poza jelitem grubym.
      Badania te mają olbrzymie znaczenie dla zapobiegania nowotworom. Niewykluczone, że w przyszłości badanie na obecność genotoksycznych E. coli stanie się jedną z metod identyfikowania grup podwyższonego ryzyka, że uda się wyeliminować z jelit szkodliwy szczep E. coli, czy też, że pozwoli to na bardzo wczesną identyfikację choroby.
      Badania opisano na łamach Nature.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Rozpoczynając atak na bakterie, bakteriofagi nakłuwają je za pomocą kurczliwego białka. Ponieważ jest ono mikroskopijne, długo nie wiedziano, jak działa i jest zbudowane. Teraz odkryto, że na jego czubku tkwi pojedynczy atom żelaza, utrzymywany w miejscu przez 6 aminokwasów.
      Biofizyk Petr Leiman z Politechniki Federalnej w Lozannie podkreśla, że sporo wiadomo o namnażaniu bakteriofagów, ale już nie o początkowych etapach zakażania ofiar. Stąd pomysł na eksperymenty z dwoma bakteriofagami P2 i Φ92, które atakują pałeczki okrężnicy (Escherichia coli) oraz bakterie z rodzaju Salmonella.
      Naukowcy odnaleźli w przeszłości gen odpowiedzialny za tworzenie białkowego "szpikulca" P2, teraz udało się to w odniesieniu do Φ92. W kolejnym etapie badań Szwajcarzy wyprodukowali oba białka i przekształcili je w kryształy. Dzięki temu do określenia budowy protein mogli się posłużyć krystalografią rentgenowską (promienie rentgenowskie ulegają dyfrakcji na kryształach, a wiązki ugięte rejestruje się za pomocą liczników, ewentualnie błony fotograficznej).
      Mimo że uważano, że krystalografia rozwieje wszelkie wątpliwości związane ze strukturą kurczliwego białka wirusów, tak się jednak nie stało. Podczas prób zrekonstruowania "szpikulca" na podstawie dyfraktogramu okazało się, że brakuje najważniejszego elementu - czubka. Akademicy zmodyfikowali więc gen bakteriofagów w taki sposób, by produkowana była tylko część białka stanowiąca czubek. Po kolejnej krystalografii rentgenowskiej określono wreszcie, jak wygląda i pod mikroskopem elektronowym wykonano zdjęcie dokumentujące przebieg nakłuwania błony zewnętrznej bakterii Gram-ujemnych.
    • przez KopalniaWiedzy.pl
      Wyścig pomiędzy dwoinką rzeżączki a ludzkością dobiega końca. Bakteria powodująca jedną z najpowszechniejszych chorób przenoszonych drogą płciową wygrywa ze współczesną nauką.
      Najnowsze badania wykazują, że dwoinka staje się oporna na wszystkie metody kuracji antybiotykowej. Przed kilku laty uczeni zauważyli, że niektóre przypadki rzeżączki niemal nie reagują na leczenie cefalosporynami. Według artykułu opublikowanego w New England Journal of Medicine, liczba opornych na leczenie przypadków zachorowań jest już tak duża, że wkrótce rzeżączka stanie się chorobą nieuleczalną.
      To już kolejny mikroorganizm, który w ostatnim czasie zyskał oporność na zwalczające go środki stosowane przez człowieka. W ubiegłym miesiącu poinformowano o znalezieniu E-coli zawierającej geny oporności na leki. W Indiach odkryto bardzo oporne na leczenie przypadki gruźlicy, a nowojorskie szpitale nie mogą poradzić sobie ze śmiertelnym zapaleniem płuc, które nie reaguje na leczenie potężnymi, stosowanymi w ostateczności antybiotykami z grupy karbapenemów.
    • przez KopalniaWiedzy.pl
      Płomykówki zwyczajne (Tyto alba) polują niemal bezszelestnie. Udaje im się to, bo lecą bardzo wolno, przez co ograniczają liczbę machnięć skrzydłami. Wolny lot to zasługa specjalnej budowy i kształtu skrzydeł.
      Dr Thomas Bachmann z Uniwersytetu Technicznego w Darmstadt zbadał upierzenie tych sów oraz wykonał obrazowanie 3D ich kośćca. Wyniki swoich badań przedstawił na dorocznej konferencji Stowarzyszenia Biologii Integracyjnej i Porównawczej w Charleston.
      Płomykówki polują przeważnie w ciemności, dlatego polegają na informacjach akustycznych. Muszą latać cicho, by słyszeć przemieszczające się nornice i nie zaalarmować ofiary, że znajdują się gdzieś w pobliżu.
      Jedną z najważniejszych cech skrzydeł T. alba jest duża krzywizna. Zapewnia ona lepszą nośność. Przepływ powietrza nad górną powierzchnią skrzydła ulega przyspieszeniu, przez co spada ciśnienie. Skrzydło jest zasysane w górę, w kierunku niższego ciśnienia.
      Za sprawą delikatnej powierzchni zredukowaniu ulega hałas związany z tarciem pióra o pióro. Poza tym całe ciało sowy jest pokryte grubą warstwą piór. Płomykówka ma ich o wiele więcej niż ptak podobnej wielkości. Gęsto rozmieszczone pióra działają jak panele akustyczne, które pochłaniają wszystkie niechciane dźwięki.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...