Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Jak mocno trzyma się atom?

Recommended Posts

lt;!-- @page { size: 21cm 29.7cm; margin: 2cm } P { margin-bottom: 0.21cm } --> Naukowcy zatrudnieni przez firmę IBM po raz kolejny popisali się umiejętnością manipulowania pojedynczymi atomami. Tym razem jednak zamiast układania napisów, osiągnęli coś znacznie ważniejszego: wraz z kolegami z niemieckiego University of Regensburg zmierzyli siły wymagane do przesuwania atomów po powierzchni kryształów. Dzięki nowo zdobytej wiedzy badacze są o krok bliżej projektowania i konstruowania nanomechanizmów, które m.in. zastąpią dzisiejsze układy scalone. Badania prowadzone za pomocą mikroskopu sił atomowych (AFM – Atomic Force Microscope) pozwolą określić, które atomy i cząsteczki mocno trzymają się powierzchni, a które słabo. Pierwsze posłużą za szkielet nanomechanizmów, drugie natomiast będą mogły pełnić rolę nośnika pamięci czy przełączników. Dotychczas sprawdzono na przykład, że do przesunięcia atomu kobaltu po powierzchni platyny wymagana jest siła 210 pikonewtonów (210×10-12 N), a jeśli powierzchnię wykonano z miedzi – jedynie 17 pN. Ponadto naukowcy odkryli, że siły drastycznie się różnią, jeśli zamiast atomu przesuwana jest cała cząsteczka. Niezwykłą precyzję pomiaru osiągnięto dzięki zastosowanej w mikroskopie specjalnej konstrukcji elastycznego "dźwigaru", na którym umieszczono końcówkę skanującą powierzchnię próbki. Element ten został wykonany z kryształu kwarcu, podobnego do tego, jaki znajduje się w zegarkach elektronicznych. Gdy końcówka mikroskopu zbliża się do jednego z atomów, działająca na nią siła powoduje niewielką zmianę częstotliwości rezonansowej kwarcu. Ponieważ mikroskop potrafi również przemieszczać atomy, pomiar wspomnianej częstotliwości pozwala oszacować zarówno siły działające na końcówkę mikroskopu, jak i te wymagane do przenoszenia atomów. Zanim naukowcy przystąpią do budowania nanomechanzimów, czeka ich jeszcze sporo pracy "u podstaw". Muszą oni skatalogować siły przyciągania poszczególnych atomów i cząstek do różnych powierzchni. Bez tych wiadomości tworzenie jakichkolwiek struktur atomowych będzie miało równie duże szanse powodzenia, co budowanie mostu przez osoby nie znające właściwości używanych materiałów.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Dzięki kombinacji laserów i wyjątkowej pułapki, w którą schwytano niezwykle zimne atomy, naukowcom z Lawrence Berkeley National Laboratory i University of California Berkeley udało się zmierzyć najmniejszą znaną nam siłę. Wynosi ona... 42 joktoniutony. Joktoniuton to jedna kwadrylionowa (10-24) niutona.
      Przyłożyliśmy zewnętrzną siłę do centrum masy superzimnej chmury atomów i optycznie zmierzyliśmy jej ruch. […] czułość naszego pomiaru jest zgodna z teoretycznymi przewidywaniami i jest jedynie czterokrotnie mniejsza od limitu kwantowego, który wyznacza granicę najbardziej dokładnego pomiaru - mówi fizyk Dan Stamper-Kurn.
      Prowadzenie tak dokładnych pomiarów jest niezbędne, jeśli chcemy potwierdzić istnienie fal grawitacyjnych. Dlatego też wiele zespołów naukowych stara się udoskonalać metody pomiarowe. Na przykład naukowcy w Laser Interferometer Gravitational-Wave Observatory próbują zmierzyć przesunięcie zaledwie o 1/1000 średnicy protonu.
      Kluczem do sukcesu wszelkich superdokładnych pomiarów jest wykorzystanie mechanicznych oscylatorów, które przekładają zewnętrzną siłę, której oddziaływaniu został poddany obiekt, na jego ruch. Gdy jednak pomiary siły i ruchu staną się tak dokładne, że dotrzemy do limitu kwantowego, ich dalsze wykonywanie nie będzie możliwe, gdyż sam pomiar – zgodnie z zasadą nieoznaczoności Heisenberga – będzie zakłócany ruchem oscylatora. Naukowcy od dziesiątków lat próbują przybliżyć się do tego limitu kwantowego. Dotychczas jednak najlepsze pomiary były od niego gorsze o 6-8 rzędów wielkości. Zmierzyliśmy siłę z dokładnością najbliższą limitowi kwantowemu. Było to możliwe, gdyż nasz mechaniczny oscylator składa się z zaledwie 1200 atomów - stwierdził Sydney Schreppler. Oscylatorem wykorzystanym przez Schrepplera, Stampera-Kurna i innych były atomy rubidu schłodzone niemal do zera absolutnego. Pułapkę stanowiły dwa promienie lasera o długości fali wynoszącej 860 i 840 nanometrów. Stanowiły one równe i przeciwstawne siły osiowe oddziałujące na atomy. Ruch centrum masy został wywołany w gazie poprzez modulowanie amplitudy drgań promienia światła o długości fali 840 nanometrów.
      Gdy do oscylatora przyłożyliśmy siłę zewnętrzną, było to tak, jakbyśmy uderzyli batem w wahadło i zbadali jego reakcję - mówi Schreppler.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Takie rozwiązanie to marzenie wielu lekarzy i laborantów: mikroigły, w których pustym wnętrzu znajdują się różne elektrochemiczne czujniki. W ten sposób można na bieżąco monitorować przez dłuższy czas chemię całego organizmu, w tym poziom cukru.
      Wewnątrz mikroigieł umieściliśmy kanaliki z szeregiem elektrochemicznych czujników, które można wykorzystać do wykrywania specyficznych cząsteczek albo wartości pH - wyjaśnia dr Roger Narayan z Uniwersytetu Stanowego Karoliny Północnej.
      Stosowane obecnie technologie bazują na pobieraniu próbek i badaniu ich. Tutaj badanie ma charakter ciągły, pozwalając np. na monitorowanie poziomu cukru we krwi diabetyka. Jak opowiada Narayan, w mikroigłach przynamniej jeden z wymiarów nie przekracza 1 milimetra.
      Pomysł jest taki, by dostosowane do indywidualnych potrzeb macierze czujników mikroigłowych wmontowywać w urządzenia przenośne, np. zegarki, znajdując dzięki temu odpowiedź na specyficzne pytania medyczne lub badawcze. Warto też zaznaczyć, że mikroigły są bezbolesne.
      Naukowcy z Uniwersytetu Stanowego Karoliny Północnej, Sandia National Laboratories i Uniwersytetu Kalifornijskiego w San Diego zbudowali na próbę mikroigłę z umieszczonymi wewnątrz czujnikami do pomiaru pH, glukozy i kwasu mlekowego (zastosowano detekcję amperometryczną). Z tym ostatnim wiążą sportowe nadzieje, wspominając, że za jego pomocą dałoby się określić stężenie metabolitu w mięśniach nie przed lub po wysiłku, ale w jego trakcie.
      Kiedy w ramach eksperymentu akademicy zmodyfikowali materiał za pomocą komórkoopornej powłoki (Lipidure), zahamowano przyleganie makrofagów. W ciągu 48 godzin nie doszło do rozwarstwienia powłoki.
    • By KopalniaWiedzy.pl
      Inżynierowie skonstruowali wiskozymetr, czyli urządzenie do badania lepkości różnych cieczy, np. keczupu i kosmetyków, które można włączyć do linii produkcyjnej. Jak tłumaczą wynalazcy z Uniwersytetu w Sheffield, wdrożona technologia pozwala monitorować w czasie rzeczywistym, jak lepkie składniki cieczy zmieniają się w trakcie poszczególnych etapów wytwarzania. Dzięki temu można zachować wszystkie pożądane parametry.
      Zakłady wytwarzające ciekłe produkty muszą wiedzieć, jak ciecze będą się zachowywać w różnych warunkach, ponieważ te rozmaite zachowania mogą wpłynąć na teksturę, smak, a nawet zapach produktu - tłumaczy dr Julia Rees.
      Lepkość większości cieczy zmienia się w różnych warunkach i projektanci często posługują się skomplikowanymi równaniami, które pozwalają wnioskować o charakterze tych zmian. Z nowo opracowanym systemem czujników, przez który ciecz po prostu przepływa, zadanie staje się o wiele prostsze. Na podstawie danych z czujników urządzenie wylicza zakres prawdopodobnych zachowań.
      Firmy pracujące nad nowymi produktami będą mogły włączyć urządzenie do procesu, co oznacza, że nie trzeba będzie pobierać próbek i przeprowadzać na nich kosztownych testów laboratoryjnych. Pozwoli to obniżyć koszty i zwiększyć wydajność produkcji.
      System będzie można skalować. Twórcy wspominają nawet o wersjach dla mikrochipów z kanalikami o średnicy ludzkiego włosa. Takie rozwiązanie sprawdzi się, gdy producenci czy naukowcy będą dysponować minimalną ilością cieczy (np. z próbek biologicznych).
      Ponieważ mikroreometr pracuje w czasie rzeczywistym, gdy zostaną wykryte wady produkcyjnie, nie będzie się marnować czasu, materiałów ani energii - podkreśla współpracownik Rees prof. Will Zimmerman.
      Zespół Rees stworzył na razie laboratoryjny prototyp. Trwają prace nad ulepszeniem technologii i uzyskaniem prototypu projektowego.
    • By KopalniaWiedzy.pl
      W Lawrence Berkeley National Laboratory powstały pierwsze trójwymiarowe linijki plazmonowe, za pomocą których można mierzyć liczone w nanometrach zmiany przestrzenne w systemach makromolekularnych. Amerykanom w ich stworzeniu pomagali naukowcy z niemieckiego Uniwersytetu w Stuttgarcie. Linijki takie pozwolą na precyzyjne pomiary np. interakcji DNA z enzymami, zaginania protein czy ruchu peptydów.
      Zademonstrowaliśmy trójwymiarowe plazmonowe linijki bazujące na plazmonowych oligomerach i spektroskopii plazmonowej. Pozwalają nam one na uzyskanie dokładnego obrazu ułożenia przestrzennego złożonych makromolekularnych procesów biologicznych oraz śledzenie ich ewolucji - stwierdził Paul Alivisatos, szef zespołu badawczego.
      W miarę jak badamy coraz mniejsze struktury, koniecznie jest opracowanie narzędzi, pozwalających na ich mierzenie. Dlatego też amerykańsko-niemiecki zespół postanowił wykorzystać plazmony, czyli fale tworzone przez wzbudzone elektrony, powstające wskutek interakcji światła z metalem. Dwie nanocząsteczki metali szlachetnych, znajdujące się blisko siebie, sprzęgną się za pomocą rezonansu plazmonów i powstanie rozpraszająca światło struktura, a jej właściwości będą ściśle zależały od odległości pomiędzy nanocząsteczkami. Ten efekt rozpraszania światła został przez nas wykorzystany do stworzenia linijek plazmonowych, których użyliśmy do mierzenia odległości pomiędzy komórkami - mówi Alivisatos.
      Dotychczas do tego typu pomiarów używano linijek bazujących na barwnikach chemicznych i zjawisku FRET, czyli mechanizmie przenoszenia energii pomiędzy dwoma chromoforami. Użycie plazmonów ma tę przewagę, że w ich przypadku nie mamy do czynienia z blaknięciem czy migotaniem. Są one ponadto bardzo jasne i stabilne.
      Do niedawna używano wyłącznie dwuwumiarowych linijek plazmonowych, gdyż uczeni nie potrafili sobie poradzić ze zbyt dużym rozpraszaniem światła, do jakiego dochodziło gdy wiele nanocząsteczek metali znajdowało się blisko siebie i poruszały się one w trzech wymiarach. W tak uzyskiwanym obrazie spektrum rozpraszanego światła było bardzo szerokie i niemożliwe było wyłonienie poszczególnych elementów, które można byłoby przypisać położeniu konkretnej nanocząsteczki.
      Teraz uczeni poradzili sobie z tym problemem stosując pięć złotych nanopręcików, z których każdy ma indywidualnie kontrolowaną długość i orientację. Pręciki ułożone są w literę H - dwa znajdują się na dole, dwa na górze, a pomiędzy nimi, prostopadle do reszty, ułożono piąty pręcik. Dzięki takiemu ułożeniu pomiędzy pojedynczym pręcikiem, a dwoma równoległymi powstaje silne sprzężenie, które pozwala na uzyskanie ostrego obrazu i umożliwia wykonanie pomiarów. Dodatkową zaletą takiej struktury jest duża swoboda ruchu wszystkich pręcików, co umożliwia dokładne badania zmian w strukturze badanych systemów.
       
      http://www.youtube.com/watch?v=dgdWrMaAxd4
    • By KopalniaWiedzy.pl
      Wraz z wiekiem wcale nie musimy tracić siły mięśni. Naukowcy z University of Michigan Health Systems doszli do wniosku, że nawet u 80- i 90-latków regularne ćwiczenia pozwalają wzmocnić mięśnie, podczas gdy u niećwiczącego 30-latka będą one coraz słabsze.
      Ćwiczenia wytrzymałościowe to wspaniały sposób na zachowanie tkanki mięśniowej i siły, dzięki czemu ludzie lepiej funkcjonują w codziennym życiu - mówi doktor Mark Peterson. Pozwala to na łatwiejsze poruszanie się i daje lepszą kontrolę nad ciałem podczas codziennych czynności. Osoby po 50. roku życia, które prowadzą siedzący tryb życia, tracą rocznie około 0,2 kilograma tkanki mięśniowej. Wraz z wiekiem ta utrata przyspiesza. Ale nawet u znacznie młodszych ludzi, 30- czy 40-latków można zauważyć pewne objawy utraty mięśni jeśli nie angażują się w żadne ćwiczenia je wzmacniające - dodaje Peterson.
      Przeprowadzona przez nas analiza dotychczasowych badań wykazała, że dla dobrego funkcjonowania ciała najważniejsza jet siła mięśni. Niezależnie od tego, w jakim człowiek jest wieku, może wzmacniać mięśnie regularnymi ćwiczeniami. Nawet gdy ma 80 czy 90 lat - stwierdza uczony. Jego zdaniem już po 18-20 tygodniach ćwiczeń wytrzymałościowych, podczas których zwiększa się wagę podnoszonych ciężarów wraz ze zwiększającą się siłą, można zyskać ponad kilogram masy mięśniowej i zwiększyć siłę mięśni o 25-30 procent.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...