Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Jak mocno trzyma się atom?
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Dzięki kombinacji laserów i wyjątkowej pułapki, w którą schwytano niezwykle zimne atomy, naukowcom z Lawrence Berkeley National Laboratory i University of California Berkeley udało się zmierzyć najmniejszą znaną nam siłę. Wynosi ona... 42 joktoniutony. Joktoniuton to jedna kwadrylionowa (10-24) niutona.
Przyłożyliśmy zewnętrzną siłę do centrum masy superzimnej chmury atomów i optycznie zmierzyliśmy jej ruch. […] czułość naszego pomiaru jest zgodna z teoretycznymi przewidywaniami i jest jedynie czterokrotnie mniejsza od limitu kwantowego, który wyznacza granicę najbardziej dokładnego pomiaru - mówi fizyk Dan Stamper-Kurn.
Prowadzenie tak dokładnych pomiarów jest niezbędne, jeśli chcemy potwierdzić istnienie fal grawitacyjnych. Dlatego też wiele zespołów naukowych stara się udoskonalać metody pomiarowe. Na przykład naukowcy w Laser Interferometer Gravitational-Wave Observatory próbują zmierzyć przesunięcie zaledwie o 1/1000 średnicy protonu.
Kluczem do sukcesu wszelkich superdokładnych pomiarów jest wykorzystanie mechanicznych oscylatorów, które przekładają zewnętrzną siłę, której oddziaływaniu został poddany obiekt, na jego ruch. Gdy jednak pomiary siły i ruchu staną się tak dokładne, że dotrzemy do limitu kwantowego, ich dalsze wykonywanie nie będzie możliwe, gdyż sam pomiar – zgodnie z zasadą nieoznaczoności Heisenberga – będzie zakłócany ruchem oscylatora. Naukowcy od dziesiątków lat próbują przybliżyć się do tego limitu kwantowego. Dotychczas jednak najlepsze pomiary były od niego gorsze o 6-8 rzędów wielkości. Zmierzyliśmy siłę z dokładnością najbliższą limitowi kwantowemu. Było to możliwe, gdyż nasz mechaniczny oscylator składa się z zaledwie 1200 atomów - stwierdził Sydney Schreppler. Oscylatorem wykorzystanym przez Schrepplera, Stampera-Kurna i innych były atomy rubidu schłodzone niemal do zera absolutnego. Pułapkę stanowiły dwa promienie lasera o długości fali wynoszącej 860 i 840 nanometrów. Stanowiły one równe i przeciwstawne siły osiowe oddziałujące na atomy. Ruch centrum masy został wywołany w gazie poprzez modulowanie amplitudy drgań promienia światła o długości fali 840 nanometrów.
Gdy do oscylatora przyłożyliśmy siłę zewnętrzną, było to tak, jakbyśmy uderzyli batem w wahadło i zbadali jego reakcję - mówi Schreppler.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Takie rozwiązanie to marzenie wielu lekarzy i laborantów: mikroigły, w których pustym wnętrzu znajdują się różne elektrochemiczne czujniki. W ten sposób można na bieżąco monitorować przez dłuższy czas chemię całego organizmu, w tym poziom cukru.
Wewnątrz mikroigieł umieściliśmy kanaliki z szeregiem elektrochemicznych czujników, które można wykorzystać do wykrywania specyficznych cząsteczek albo wartości pH - wyjaśnia dr Roger Narayan z Uniwersytetu Stanowego Karoliny Północnej.
Stosowane obecnie technologie bazują na pobieraniu próbek i badaniu ich. Tutaj badanie ma charakter ciągły, pozwalając np. na monitorowanie poziomu cukru we krwi diabetyka. Jak opowiada Narayan, w mikroigłach przynamniej jeden z wymiarów nie przekracza 1 milimetra.
Pomysł jest taki, by dostosowane do indywidualnych potrzeb macierze czujników mikroigłowych wmontowywać w urządzenia przenośne, np. zegarki, znajdując dzięki temu odpowiedź na specyficzne pytania medyczne lub badawcze. Warto też zaznaczyć, że mikroigły są bezbolesne.
Naukowcy z Uniwersytetu Stanowego Karoliny Północnej, Sandia National Laboratories i Uniwersytetu Kalifornijskiego w San Diego zbudowali na próbę mikroigłę z umieszczonymi wewnątrz czujnikami do pomiaru pH, glukozy i kwasu mlekowego (zastosowano detekcję amperometryczną). Z tym ostatnim wiążą sportowe nadzieje, wspominając, że za jego pomocą dałoby się określić stężenie metabolitu w mięśniach nie przed lub po wysiłku, ale w jego trakcie.
Kiedy w ramach eksperymentu akademicy zmodyfikowali materiał za pomocą komórkoopornej powłoki (Lipidure), zahamowano przyleganie makrofagów. W ciągu 48 godzin nie doszło do rozwarstwienia powłoki.
-
przez KopalniaWiedzy.pl
Inżynierowie skonstruowali wiskozymetr, czyli urządzenie do badania lepkości różnych cieczy, np. keczupu i kosmetyków, które można włączyć do linii produkcyjnej. Jak tłumaczą wynalazcy z Uniwersytetu w Sheffield, wdrożona technologia pozwala monitorować w czasie rzeczywistym, jak lepkie składniki cieczy zmieniają się w trakcie poszczególnych etapów wytwarzania. Dzięki temu można zachować wszystkie pożądane parametry.
Zakłady wytwarzające ciekłe produkty muszą wiedzieć, jak ciecze będą się zachowywać w różnych warunkach, ponieważ te rozmaite zachowania mogą wpłynąć na teksturę, smak, a nawet zapach produktu - tłumaczy dr Julia Rees.
Lepkość większości cieczy zmienia się w różnych warunkach i projektanci często posługują się skomplikowanymi równaniami, które pozwalają wnioskować o charakterze tych zmian. Z nowo opracowanym systemem czujników, przez który ciecz po prostu przepływa, zadanie staje się o wiele prostsze. Na podstawie danych z czujników urządzenie wylicza zakres prawdopodobnych zachowań.
Firmy pracujące nad nowymi produktami będą mogły włączyć urządzenie do procesu, co oznacza, że nie trzeba będzie pobierać próbek i przeprowadzać na nich kosztownych testów laboratoryjnych. Pozwoli to obniżyć koszty i zwiększyć wydajność produkcji.
System będzie można skalować. Twórcy wspominają nawet o wersjach dla mikrochipów z kanalikami o średnicy ludzkiego włosa. Takie rozwiązanie sprawdzi się, gdy producenci czy naukowcy będą dysponować minimalną ilością cieczy (np. z próbek biologicznych).
Ponieważ mikroreometr pracuje w czasie rzeczywistym, gdy zostaną wykryte wady produkcyjnie, nie będzie się marnować czasu, materiałów ani energii - podkreśla współpracownik Rees prof. Will Zimmerman.
Zespół Rees stworzył na razie laboratoryjny prototyp. Trwają prace nad ulepszeniem technologii i uzyskaniem prototypu projektowego.
-
przez KopalniaWiedzy.pl
W Lawrence Berkeley National Laboratory powstały pierwsze trójwymiarowe linijki plazmonowe, za pomocą których można mierzyć liczone w nanometrach zmiany przestrzenne w systemach makromolekularnych. Amerykanom w ich stworzeniu pomagali naukowcy z niemieckiego Uniwersytetu w Stuttgarcie. Linijki takie pozwolą na precyzyjne pomiary np. interakcji DNA z enzymami, zaginania protein czy ruchu peptydów.
Zademonstrowaliśmy trójwymiarowe plazmonowe linijki bazujące na plazmonowych oligomerach i spektroskopii plazmonowej. Pozwalają nam one na uzyskanie dokładnego obrazu ułożenia przestrzennego złożonych makromolekularnych procesów biologicznych oraz śledzenie ich ewolucji - stwierdził Paul Alivisatos, szef zespołu badawczego.
W miarę jak badamy coraz mniejsze struktury, koniecznie jest opracowanie narzędzi, pozwalających na ich mierzenie. Dlatego też amerykańsko-niemiecki zespół postanowił wykorzystać plazmony, czyli fale tworzone przez wzbudzone elektrony, powstające wskutek interakcji światła z metalem. Dwie nanocząsteczki metali szlachetnych, znajdujące się blisko siebie, sprzęgną się za pomocą rezonansu plazmonów i powstanie rozpraszająca światło struktura, a jej właściwości będą ściśle zależały od odległości pomiędzy nanocząsteczkami. Ten efekt rozpraszania światła został przez nas wykorzystany do stworzenia linijek plazmonowych, których użyliśmy do mierzenia odległości pomiędzy komórkami - mówi Alivisatos.
Dotychczas do tego typu pomiarów używano linijek bazujących na barwnikach chemicznych i zjawisku FRET, czyli mechanizmie przenoszenia energii pomiędzy dwoma chromoforami. Użycie plazmonów ma tę przewagę, że w ich przypadku nie mamy do czynienia z blaknięciem czy migotaniem. Są one ponadto bardzo jasne i stabilne.
Do niedawna używano wyłącznie dwuwumiarowych linijek plazmonowych, gdyż uczeni nie potrafili sobie poradzić ze zbyt dużym rozpraszaniem światła, do jakiego dochodziło gdy wiele nanocząsteczek metali znajdowało się blisko siebie i poruszały się one w trzech wymiarach. W tak uzyskiwanym obrazie spektrum rozpraszanego światła było bardzo szerokie i niemożliwe było wyłonienie poszczególnych elementów, które można byłoby przypisać położeniu konkretnej nanocząsteczki.
Teraz uczeni poradzili sobie z tym problemem stosując pięć złotych nanopręcików, z których każdy ma indywidualnie kontrolowaną długość i orientację. Pręciki ułożone są w literę H - dwa znajdują się na dole, dwa na górze, a pomiędzy nimi, prostopadle do reszty, ułożono piąty pręcik. Dzięki takiemu ułożeniu pomiędzy pojedynczym pręcikiem, a dwoma równoległymi powstaje silne sprzężenie, które pozwala na uzyskanie ostrego obrazu i umożliwia wykonanie pomiarów. Dodatkową zaletą takiej struktury jest duża swoboda ruchu wszystkich pręcików, co umożliwia dokładne badania zmian w strukturze badanych systemów.
http://www.youtube.com/watch?v=dgdWrMaAxd4 -
przez KopalniaWiedzy.pl
Wraz z wiekiem wcale nie musimy tracić siły mięśni. Naukowcy z University of Michigan Health Systems doszli do wniosku, że nawet u 80- i 90-latków regularne ćwiczenia pozwalają wzmocnić mięśnie, podczas gdy u niećwiczącego 30-latka będą one coraz słabsze.
Ćwiczenia wytrzymałościowe to wspaniały sposób na zachowanie tkanki mięśniowej i siły, dzięki czemu ludzie lepiej funkcjonują w codziennym życiu - mówi doktor Mark Peterson. Pozwala to na łatwiejsze poruszanie się i daje lepszą kontrolę nad ciałem podczas codziennych czynności. Osoby po 50. roku życia, które prowadzą siedzący tryb życia, tracą rocznie około 0,2 kilograma tkanki mięśniowej. Wraz z wiekiem ta utrata przyspiesza. Ale nawet u znacznie młodszych ludzi, 30- czy 40-latków można zauważyć pewne objawy utraty mięśni jeśli nie angażują się w żadne ćwiczenia je wzmacniające - dodaje Peterson.
Przeprowadzona przez nas analiza dotychczasowych badań wykazała, że dla dobrego funkcjonowania ciała najważniejsza jet siła mięśni. Niezależnie od tego, w jakim człowiek jest wieku, może wzmacniać mięśnie regularnymi ćwiczeniami. Nawet gdy ma 80 czy 90 lat - stwierdza uczony. Jego zdaniem już po 18-20 tygodniach ćwiczeń wytrzymałościowych, podczas których zwiększa się wagę podnoszonych ciężarów wraz ze zwiększającą się siłą, można zyskać ponad kilogram masy mięśniowej i zwiększyć siłę mięśni o 25-30 procent.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.