Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Deep Carbon Observatory oszacowało całkowitą ilość węgla na Ziemi

Rekomendowane odpowiedzi

Za trzy tygodnie zostanie przedstawione szczegółowe podsumowanie projektu Deep Carbon Observatory (DCO), prowadzonego od 10 lat przez amerykańskie Narodowe Akademie Nauk. W programie bierze obecnie udział niemal 1000 naukowców z niemal 50 krajów na świecie. Mediom udostępniono już główne wnioski z raportu, które zostały opublikowane w piśmie Elements.

Z badań wynika, że w oceanach, najwyższej warstwie gleby oraz w atmosferze znajduje się 43 500 gigaton (Gt – miliardów ton) węgla. Cała reszta jest uwięziona w ziemskiej skorupie, płaszczu i jądrze. Całkowita ilość węgla obecnego na naszej planecie to 1,85 miliarda Gt. Każdego roku z głębi Ziemi za pośrednictwem wulkanów oraz innych aktywnych regionów emitowanych jest od 280 do 360 milionów ton (0,28–0,36 Gt) węgla. Zatem całkowita antropogeniczna emisja węgla jest od 40 do 100 razy większa, niż całkowita emisja z aktywności wulkanicznej.

Obieg węgla w głębi planety wykazuje długoterminową stabilność. Czasami dochodzi do katastrofalnych wydarzeń, podczas których do atmosfery przedostają się duże ilości węgla, co powoduje ocieplenie klimatu, zakwaszenie oceanów oraz masowe wymieranie. W ciągu ostatnich 500 milionów lat Ziemia doświadczyła co najmniej 5 tego typu wydarzeń. Upadek meteorytu, który przed 66 miliony laty przyczynił się do zagłady dinozaurów, spowodował emisję od 425 do 1400 Gt CO2 powodując ogrzanie klimatu i masowe wymieranie roślin i zwierząt. Niewykluczone, że uda się opracować system wczesnego ostrzegania przed erupcjami wulkanicznymi, gdyż przed 5 laty zaobserwowano, iż przed wybuchem w gazach wulkanicznych zmniejsza się udział dwutlenku siarki, a zwiększa dwutlenku węgla.

Węgiel, będący podstawą wszelkiego życia i źródłem energii dla ludzkości, obiega planetę od płaszcza po atmosferę. By zabezpieczyć naszą przyszłość, musimy lepiej zrozumieć cały cykl obiegu węgla. Kluczowe jest określenie, jak wiele jest tego węgla, gdzie on się znajduje, jak szybko i w jakiej ilości przemieszcza się pomiędzy głębokimi obszarami ziemi a atmosferą i z powrotem, mówi Marie Edmonds z University of Cambridge, która bierze udział w projekcie DCO. Z kolei Tobias Fischer z University of New Mexico przypomina, że dotychczas w ramach prac DCO powstało ponad 1500 publikacji naukowych. Cieszymy się z postępu, jednak trzeba podkreślić, że głębokie warstwy naszej planety to obszar w dużej mierze nieznany nauce. Dopiero zaczynamy zdobywać potrzebną nam wiedzę.

Ponad powierzchnią Ziemi występuje 43 500 gigaton węgla. Niemal cały ten węgiel, bo 37 000 gigaton znajduje się w głębinach oceanów. Kolejne 3000 gigaton występuje w osadach morskich, a 2000 Gt w biosferze lądowej. W powierzchniowych wodach oceanów występuje 900 Gt węgla, a w atmosferze jest go 590 Gt.

Eksperci z DCO oceniają też, że obecnie na Ziemi aktywnych jest około 400 z 1500 wulkanów, które były aktywne od ostatniej epoki lodowej. Kolejnych 670 wulkanów, które były aktywne przed epoką lodową, może emitować gazy. Dotychczas udokumentowano emisję ze 102 takich wulkanów, z czego 22 to wulkany, w przypadku których ostatnia erupcja miała miejsce dawniej niż 2,5 miliona lat temu. Dzięki stacjom monitorującym, modelom cyfrowym i eksperymentom wiemy, że w latach 2005–2017 mierzalne ilości CO2 emitowało do atmosfery ponad 200 systemów wulkanicznych. Jeszcze w roku 2013 ich liczbę oceniano na 150. Udokumentowano też superregiony w których dochodzi do rozproszonej emisji gazów z wnętrza Ziemi, takie jak Yellowstone, Wielki Rów Wschodni w Afryce czy wulkaniczna prowincja Technong w Chinach. Dzięki tym badaniom możliwe było stwierdzenie, że emisja z takich regionów jest porównywalna z emisją wulkaniczną


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Cytat

wulkaniczna prowincja Technong w Chinach

Chodzi oczywiście o pole wulkaniczne Tengchong w chińskiej prowincji Junnan (Yunnan), przy granicy z Mjanmą (tak się teraz nazywa Birma):

https://en.wikipedia.org/wiki/Tengchong_volcanic_field

Rozumiem, że naukowcy spierają się, co zasługuje na nazwę prowincji magmatycznej, ale takie błędy w nazwach to niewątpliwa wina redakcji źródła. A cały świat to kopiuje bez sprawdzania… Wstyd.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

NIE do konca qumam jak ci wszyscy  naukowcy to policzyli i na czym oparli te swoje twarde dane za ktore gruba kase wzieli.

Na moj gust nasza wiedza o oceanach jest mierna wiec trudno szacowac cokolwiek majac wiedze  mierna

druga sprawa to plaszcz ziemi w ktorym to niby znajduje sie  jakas zawartosc wegla ... no tak wszystko fajnie i prawda tam przeciez jest wegiel ale...

Z tego co mi wiadomo to nasza technologia pozwala nam na zejscie w glab ziemi na okolo 4 km czyli 4000 METROW!! - mowie o kopalniach zlota w RPA

...problem w tym ze  technologia nie pozwala nam na glebsze badania a wierzchni i podoceaniczny plaszcz ziemi razem wziety to nie  4km a 7 TYSIECY Kilometrow - wiec czy wytlumaczy mi ktos logicznie jak ci wszyscy  solidnie zarabiajacy naukowcy to wiedza co jest TAM gdzie nie maja pojecia co tam jest ??

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Koala to jedne z najbardziej rozpoznawalnych i lubianych zwierząt na Ziemi. Te niewielkie ssaki są jednak zagrożone w wyniku utraty i fragmentacji siedlisk oraz trapiących je chorób. Wiemy, że niemal całe życie spędzają na drzewach, schodzą z nich tylko, by przemieścić się na inne drzewo. I pomimo tego, że na gatunek ten zwraca się dużo uwagi, nauka niewiele wie o tych nielicznych chwilach, które zwierzęta spędzają na ziemi. Tymczasem z najnowszych badań wynika, że właśnie to zabija koale.
      Już poprzednie badania zgonów koali pokazały, że do 66% zgonów wśród nich dochodzi w momencie, gdy są na ziemi. Są tam głównie zabijane przez psy oraz samochody. Nie wiemy, jak często koala schodzą z drzew, jak daleko i jak szybko się przemieszczają, jak długo pozostają na ziemi, dlaczego schodzą z drzew. To niezwykle ważne informacje, których potrzebujemy, jeśli chcemy zidentyfikować najbardziej zagrożone obszary lub pory dnia i opracować strategie zmniejszenia zagrożeń czyhających na te zwierzęta, mówi doktorantka Gabriella Sparkes z University of Queensland.
      Uczona wraz z zespołem wyposażyła dzikie koale w nadajniki GPS oraz akcelerometry. Urządzenia założono zwierzętom żyjącym na obszarach, na których wiele drzew wycięto na potrzeby rolnictwa. Pozycję koali rejestrowano co 5 minut, a gdy znalazły się na ziemi, była ona odnotowywana co 5 sekund. Dzięki temu możliwe było precyzyjne określenie zachowań zwierząt.
      Tym, co zaszokowało naukowców, był fakt, jak wiele czasu zwierzęta spędzają na drzewach. Okazało się, że schodzą one z nich zaledwie 2-3 razy w ciągu nocy, a łączny czas przebywania na gruncie wynosi zaledwie około 10 minut. Z badań wynika też, że przebywające na ziemi zwierzę porusza się naprawdę powoli. Niemal tyle samo czasu spędzały na siedzeniu i staniu, co na przemieszczaniu się, a szybciej poruszają się jedynie przez 7% czasu spędzanego na gruncie. To może oznaczać, że zwierzęta bardzo szczegółowo oceniają otocznie, być może starannie wybierają drzewa, na które chcą wejść, a być może szybszy ruch wiąże się z olbrzymim wydatkiem energetycznym.
      Dokonane odkrycie przynosi niezwykle ważne informacje i pokazuje, jak wielkim zagrożeniem jest wycinka drzew. Skoro w ciągu tych zaledwie 10 minut przebywania na gruncie, ginie aż 2/3 zwierząt, a fragmentacja siedlisk powoduje, że koala zmuszone są przebywać na gruncie coraz więcej czasu, dalsze niszczenie środowiska może przynieść gatunkowi zagładę.
      Teraz autorzy badań oceniają te cechy habitatów koali, które decydują, jak długo zwierzęta pozostają na drzewach. Jeśli zidentyfikujemy gatunki drzew lub warunki środowiskowe powodujące, że zwierzęta dłużej zostają na drzewach, być może będziemy w stanie tak zarządzać krajobrazem, że rzadziej będą musiały schodzić z drzew, mówi Sparkes.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W ciągu ostatnich 200 lat ludzkość wybudowała tyle zapór wodnych, że masa nagromadzonej wody doprowadziła do przesunięcia się skorupy Ziemi w stosunku do osi obrotu naszej planety. Pierwsza ze zmian została wywołana przez zapory wybudowane w Amerykach, drugą zaś spowodowało budowanie zapór w Afryce i Azji.
      Skorupa Ziemi leży na plastycznej, częściowo stopionej górnej części płaszcza planety. Może się więc względem niego przesuwać. I przesuwa się w wyniku zmiany rozkładu masy. Wówczas zmienia się też położenie punktów na skorupie, które wcześniej stanowiły bieguny planety.
      Geolodzy z Uniwersytetu Harvarda opublikowali na łamach Geophysical Research Letters artykuł, w którym ocenili wpływ 6862 zapór wodnych wybudowanych przez człowieka w latach 1835–2011 na położenie skorupy.
      Pomiędzy rokiem 1835 a 1954 w Ameryce Północnej i – w znacznie mniejszym stopniu – w Europie wybudowano tak wiele zapór wodnych, że w wyniku zmian dystrybucji masy na planecie dotychczasowy punkt wyznaczający biegun północny przesunął się 20,5 centymetra w kierunku 103. południka na wschód od Greenwich, który przechodzi przez Rosję, Mongolię, Chiny, Wietnam, Laos i Indonezję. Z tych ponad 20 centymetrów ruchu na wiek XIX przypadało jedynie 0,7 cm. Następnie w latach 1954–2011 tamy wybudowane w Afryce Wschodniej i Azji spowodowały, że doszło do przesunięcia o 57,1 cm w kierunku południka 117. zachodniego, przebiegającego przez zachodnie części Kanady i USA.
      Uwięzienie tak wielkich ilości wody w zaporach spowodowało, że w badanym okresie poziom oceanów spadł o 21 milimetrów. A raczej nie zwiększył się o te 21 mm. W badanych zaporach znajduje się około 8000 kilometrów sześciennych wody.
      W sumie, z różnych przyczyn, w latach 1835–2011 skorupa ziemska przesunęła się o około 113 centymetrów, z czego 104 centymetry przypadają na wiek XX.
      Źródło: True Polar Wander Driven by Artificial Water Impoundment: 1835–2011, https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GL115468

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przez ostatnich 540 milionów lat zmiany w sile pola magnetycznego Ziemi były skorelowane z poziomem atmosferycznego tlenu, donosi amerykańsko-brytyjski zespół naukowy. Wyniki badań sugerują, że procesy zachodzące głęboko wewnątrz naszej planety mogły mieć wpływ na organizmy żywe na powierzchni Ziemi. O swoim odkryciu uczeni poinformowali na łamach Science Advances.
      Historia ziemskiego magnetyzmu zapisana jest w skałach. Gdy rozgrzane minerały znajdujące się magmie stygną, mogą zapisać stan lokalnego pola magnetycznego. I zapis ten pozostanie w nich dopóty, dopóki nie zostaną ponownie silnie rozgrzane. Również ze skał i minerałów można odczytać poziom tlenu w atmosferze, gdyż ich skład chemiczny zależy od ilości tlenu w czasie, gdy się tworzyły. I jeden, i drugi zapis jest od dawna używany w nauce, informacje takie można znaleźć w olbrzymiej liczbę baz danych utworzonych na potrzeby badań geofizycznych i geochemicznych. Jednak, jak twierdzą autorzy nowych badań, dotychczas nikt nie wpadł na pomysł, by dokładnie porównać ze sobą oba zapisy.
      Zadania takiego podjęli się Weijia Kuang i Ravi Kopparapu z NASA Goddard Space Flight Center, Joshua Krissansen-Totton z University of Washington oraz Benjamin J. W. Mills z University of Leeds. Te dwa zestawy danych są bardzo podobne. Ziemia to jedyna znana nam planeta, która podtrzymuje złożone formy życia. Korelacja, którą znaleźliśmy, pozwoli nam lepiej zrozumieć ewolucję oraz jak jest ona powiązana z procesami zachodzącymi wewnątrz planety, mówi Weijia Kiang.
      Uczeni prześledzili zmiany siły pola magnetycznego i poziomu tlenu w atmosferze aż do czasów eksplozji kambryjskiej, w czasie której nagle pojawiło się wiele złożonych form życia. Istnienie korelacji pomiędzy siłą pola magnetycznego, a poziomem tlenu sugeruje, że oba te zjawiska mogą być reakcją na ten sam proces, na przykład na ruch kontynentów, uważa Benjamin Mills.
      Naukowcy mają nadzieję, że uda im się prześledzić jeszcze dłuższy okres historii Ziemi. Chcą sprawdzić, czy znaleziona korelacja się utrzyma. Planują też poddać analizie inne pierwiastki niezbędne do istnienia życia, by przekonać się, czy i w ich przypadku widać taki sam schemat.
      Źródło: Strong link between Earth’s oxygen level and geomagnetic dipole revealed since the last 540 million years, https://www.science.org/doi/10.1126/sciadv.adu8826

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ziemia doświadczyła co najmniej 5 epizodów masowego wymierania. Przyczyny niektórych z nich, jak wymierania kredowego, kiedy wyginęły dinozaury, są znane. Co do innych wymierań, nie mamy takiej pewności. Od pewnego czasu pojawiają się głosy, że za przynajmniej jedno z wymierań odpowiedzialny był wybuch supernowej. Autorzy nowych badań uważają, że bliskie Ziemi supernowe już co najmniej dwukrotnie doprowadziły do wymierania gatunków. I nie mamy gwarancji, że sytuacja się nie powtórzy.
      Podczas eksplozji supernowej dochodzi do emisji olbrzymich ilości promieniowania ultrafioletowego, X czy gamma. Z badań przeprowadzonych w 2020 roku wiemy, że wybuch supernowej w odległości mniejszej niż 10 parseków (ok. 33 lata świetlne) od Ziemi, całkowicie zabiłby życie na naszej planecie. Za wymierania mogą więc odpowiadać wybuchy, do których doszło w odległości około 20 parseków (pc). Zginęłoby wówczas wiele gatunków, ale samo życie by przetrwało.
      Alexis L. Quintana z Uniwersytetu w Alicante oraz Nicholas J. Wright i Juan Martínez García z Keele University przyjrzeli się 24 706 gwiazdom OB znajdujących się w odległości 1 kiloparseka (kpc), czyli 3261 lat świetlnych od Słońca. Dzięki temu obliczyli tempo tworzenia się takich gwiazd, liczbę supernowych oraz liczbę supernowych bliskich Ziemi. Na podstawie tych obliczeń doszli do wniosku, że supernowe mogły odpowiadać za dwa masowe wymierania na Ziemi – ordowickie sprzed 438 milionów lat oraz dewońskie, do którego doszło 374 miliony lat temu.
      Autorzy wspomnianych badań z 2020 roku stwierdzili, że supernowa Typu II była odpowiedzialna z kryzys Hangenberg, końcowy epizod wymierania dewońskiego. Ich zdaniem, promieniowanie z wybuchu supernowej docierało do Ziemi przez 100 000 lat, doprowadziło do olbrzymiego zubożenia warstwy ozonowej i masowego wymierania.
      Quintana, Wright i García wyliczają, że do eksplozji supernowej w odległości 20 pc od Ziemi dochodzi raz na około 2,5 miliarda lat.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Curtin University School of Earth and Planetary Sciences i Geological Survey of Western Australia, odkryli najstarszy na Ziemi krater uderzeniowy. Znaleźli go na obszarze North Pole Dome znajdującym się w regionie Pilbara, w którym znajdują się najstarsze skały na naszej planecie. Krater powstał 3,5 miliarda lat temu.
      Przed naszym odkryciem najstarszy znany krater uderzeniowy na Ziemi liczył sobie 2,2 miliarda lat, mówi profesor Tim Johnson i dodaje, że znalezienie starszego krateru w dużym stopniu wpływa na założenie dotyczące historii Ziemi.
      Krater zidentyfikowano dzięki stożkom zderzeniowym. To struktura geologiczna, która powstaje w wyniku szokowego przekształcenia skał. Stożki powstają w pobliżu kraterów uderzeniowych czy podziemnych prób jądrowych. W badanym miejscu stożki powstały podczas upadku meteorytu pędzącego z prędkością ponad 36 000 km/h. Było to potężne uderzenie, w wyniku którego powstał krater o średnicy ponad 100 kilometrów, a wyrzucone szczątki rozprzestrzeniły się po całej planecie.
      Wiemy, że takie zderzenia często miały miejsce na wczesnych etapach powstawania Układu Słonecznego. Odkrycie tego krateru i znalezienie innych z tego samego czasu może nam wiele powiedzieć o pojawieniu się życia na Ziemi. Kratery uderzeniowe tworzą bowiem środowisko przyjazne mikroorganizmom, takie jak zbiorniki z gorącą wodą, dodaje profesor Chris Kirkland.
      Olbrzymia ilość energii, jaka wyzwoliła się podczas uderzenia, mogła mieć wpływ na kształt młodej skorupy ziemskiej, wciskając jedne jej części pod drugie lub wymuszając ruch magmy w górę. Uderzenie mogło tez przyczynić się do powstania kratonu, dużego stabilnego fragmentu skorupy ziemskiej, będącego zalążkiem kontynentu.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...