Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Deep Carbon Observatory oszacowało całkowitą ilość węgla na Ziemi

Rekomendowane odpowiedzi

Za trzy tygodnie zostanie przedstawione szczegółowe podsumowanie projektu Deep Carbon Observatory (DCO), prowadzonego od 10 lat przez amerykańskie Narodowe Akademie Nauk. W programie bierze obecnie udział niemal 1000 naukowców z niemal 50 krajów na świecie. Mediom udostępniono już główne wnioski z raportu, które zostały opublikowane w piśmie Elements.

Z badań wynika, że w oceanach, najwyższej warstwie gleby oraz w atmosferze znajduje się 43 500 gigaton (Gt – miliardów ton) węgla. Cała reszta jest uwięziona w ziemskiej skorupie, płaszczu i jądrze. Całkowita ilość węgla obecnego na naszej planecie to 1,85 miliarda Gt. Każdego roku z głębi Ziemi za pośrednictwem wulkanów oraz innych aktywnych regionów emitowanych jest od 280 do 360 milionów ton (0,28–0,36 Gt) węgla. Zatem całkowita antropogeniczna emisja węgla jest od 40 do 100 razy większa, niż całkowita emisja z aktywności wulkanicznej.

Obieg węgla w głębi planety wykazuje długoterminową stabilność. Czasami dochodzi do katastrofalnych wydarzeń, podczas których do atmosfery przedostają się duże ilości węgla, co powoduje ocieplenie klimatu, zakwaszenie oceanów oraz masowe wymieranie. W ciągu ostatnich 500 milionów lat Ziemia doświadczyła co najmniej 5 tego typu wydarzeń. Upadek meteorytu, który przed 66 miliony laty przyczynił się do zagłady dinozaurów, spowodował emisję od 425 do 1400 Gt CO2 powodując ogrzanie klimatu i masowe wymieranie roślin i zwierząt. Niewykluczone, że uda się opracować system wczesnego ostrzegania przed erupcjami wulkanicznymi, gdyż przed 5 laty zaobserwowano, iż przed wybuchem w gazach wulkanicznych zmniejsza się udział dwutlenku siarki, a zwiększa dwutlenku węgla.

Węgiel, będący podstawą wszelkiego życia i źródłem energii dla ludzkości, obiega planetę od płaszcza po atmosferę. By zabezpieczyć naszą przyszłość, musimy lepiej zrozumieć cały cykl obiegu węgla. Kluczowe jest określenie, jak wiele jest tego węgla, gdzie on się znajduje, jak szybko i w jakiej ilości przemieszcza się pomiędzy głębokimi obszarami ziemi a atmosferą i z powrotem, mówi Marie Edmonds z University of Cambridge, która bierze udział w projekcie DCO. Z kolei Tobias Fischer z University of New Mexico przypomina, że dotychczas w ramach prac DCO powstało ponad 1500 publikacji naukowych. Cieszymy się z postępu, jednak trzeba podkreślić, że głębokie warstwy naszej planety to obszar w dużej mierze nieznany nauce. Dopiero zaczynamy zdobywać potrzebną nam wiedzę.

Ponad powierzchnią Ziemi występuje 43 500 gigaton węgla. Niemal cały ten węgiel, bo 37 000 gigaton znajduje się w głębinach oceanów. Kolejne 3000 gigaton występuje w osadach morskich, a 2000 Gt w biosferze lądowej. W powierzchniowych wodach oceanów występuje 900 Gt węgla, a w atmosferze jest go 590 Gt.

Eksperci z DCO oceniają też, że obecnie na Ziemi aktywnych jest około 400 z 1500 wulkanów, które były aktywne od ostatniej epoki lodowej. Kolejnych 670 wulkanów, które były aktywne przed epoką lodową, może emitować gazy. Dotychczas udokumentowano emisję ze 102 takich wulkanów, z czego 22 to wulkany, w przypadku których ostatnia erupcja miała miejsce dawniej niż 2,5 miliona lat temu. Dzięki stacjom monitorującym, modelom cyfrowym i eksperymentom wiemy, że w latach 2005–2017 mierzalne ilości CO2 emitowało do atmosfery ponad 200 systemów wulkanicznych. Jeszcze w roku 2013 ich liczbę oceniano na 150. Udokumentowano też superregiony w których dochodzi do rozproszonej emisji gazów z wnętrza Ziemi, takie jak Yellowstone, Wielki Rów Wschodni w Afryce czy wulkaniczna prowincja Technong w Chinach. Dzięki tym badaniom możliwe było stwierdzenie, że emisja z takich regionów jest porównywalna z emisją wulkaniczną


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Cytat

wulkaniczna prowincja Technong w Chinach

Chodzi oczywiście o pole wulkaniczne Tengchong w chińskiej prowincji Junnan (Yunnan), przy granicy z Mjanmą (tak się teraz nazywa Birma):

https://en.wikipedia.org/wiki/Tengchong_volcanic_field

Rozumiem, że naukowcy spierają się, co zasługuje na nazwę prowincji magmatycznej, ale takie błędy w nazwach to niewątpliwa wina redakcji źródła. A cały świat to kopiuje bez sprawdzania… Wstyd.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

NIE do konca qumam jak ci wszyscy  naukowcy to policzyli i na czym oparli te swoje twarde dane za ktore gruba kase wzieli.

Na moj gust nasza wiedza o oceanach jest mierna wiec trudno szacowac cokolwiek majac wiedze  mierna

druga sprawa to plaszcz ziemi w ktorym to niby znajduje sie  jakas zawartosc wegla ... no tak wszystko fajnie i prawda tam przeciez jest wegiel ale...

Z tego co mi wiadomo to nasza technologia pozwala nam na zejscie w glab ziemi na okolo 4 km czyli 4000 METROW!! - mowie o kopalniach zlota w RPA

...problem w tym ze  technologia nie pozwala nam na glebsze badania a wierzchni i podoceaniczny plaszcz ziemi razem wziety to nie  4km a 7 TYSIECY Kilometrow - wiec czy wytlumaczy mi ktos logicznie jak ci wszyscy  solidnie zarabiajacy naukowcy to wiedza co jest TAM gdzie nie maja pojecia co tam jest ??

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Grupa ekspertów postanowiła odpowiedzieć na pytanie, czy pozaziemska cywilizacja o podobnym do naszego poziomie rozwoju technologicznego, byłaby w stanie wykryć Ziemię i zdobyć dowody na istnienie ludzkości, a jeśli tak, to jakie sygnały mogliby wykryć i z jakiej odległości. Zespół, pracujący pod kierunkiem doktor Sofii Sheikh z SETI Institute, składał się ze specjalistów z projektu Characterizing Atmospheric Technosignatures oraz Penn State Extraterrestrial Intelligence Center.
      Do przeprowadzenia analizy – pierwszej tego typu – naukowcy wykorzystali modele teoretyczne. Wykazały one, że pozaziemska cywilizacja z największej odległości mogłaby wykryć sygnały radiowe, takie jak te pochodzące z niedziałającego już Radioteleskopu Arecibo. Obcy mogliby zauważyć je z odległości do 12 000 lat świetlnych. Zatem sygnał taki mogłaby wykryć cywilizacja znajdująca się w połowie odległości między Ziemią a centrum Drogi Mlecznej.
      Radioteleskop Arecibo nie istnieje, więc pozostają nam inne sygnały, na podstawie których można nas odnaleźć. Deep Space Network (DSN), używaną przez NASA sieć komunikacyjną do łączenia się z pojazdami przebywającymi w przestrzeni kosmicznej, obcy mogliby zauważyć z odległości 65 lat świetlnych.
      Jednak tutaj musimy na chwilę się zatrzymać. W obu tych przypadkach – Arecibo i DSN – musimy pamiętać, że podane odległości są większe niż czas, jaki upłynął od uruchomienia tych urządzeń. Zatem ani pierwszy sygnał z Arecibo nie dotarł jeszcze na odległość 1200 lś, ani sygnału z DSN nie można zauważyć obecnie z odległości 65 lat świetlnych.
      Im bliżej Ziemi, tych więcej technosygnatur, sygnałów świadczących o obecności cywilizacji technicznej. I tak sygnatury atmosferyczne, takie jak emisja dwutlenku azotu, są dla nas obecnie łatwiejsze do wykrycia niż były jeszcze dekadę temu. Dzięki takim instrumentom jak Teleskop Webba czy planowany Habitable Worlds Observatory (HWO) możemy zauważyć obcą cywilizację z większej niż wcześniej odległości. Tak więc cywilizacja dysponująca HWO mogłaby dostrzec nas z odległości 5,7 lat świetlnych. To odległość nieco większa, niż dystans dzielący nas od najbliższej gwiazdy, Proximy Centauri. Z podobnej odległości można zarejestrować lasery wycelowane w niebo. Ludzkość czasami korzysta z takich instrumentów jak Deep Space Optical Communications, którego NASA używa do testów technologii komunikacji laserowej w przestrzeni kosmicznej.
      Z odległości 4 lat świetlnych można zauważyć sygnały sieci bezprzewodowych LTE. Z kolei sygnał z Voyagera jest widoczny z 0,97 roku świetlnego.
      Obcy mogliby wykryć też światła miast. Szczególnie te generowane przez lampy sodowe, które mają unikatowe sygnatury. Ich obserwacja jest możliwa z odległości 0,036 roku świetlnego. To 2275 jednostek astronomicznych, a więc obszar położony w pobliżu wewnętrznych krawędzi Obłoku Oorta.
      Z regionów Pasa Kuipera (30–50 au) obcy mogliby odnotować obecność miejskich wysp ciepła, a gdyby mieszkali na Marsie mieliby szansę zauważyć satelity krążące wokół Ziemi.
      Celem badań było pokazanie, w jakim miejscu my sami znajdujemy się, jeśli chodzi o możliwość wykrywania technosygnatur świadczących o obecności pozaziemskich cywilizacji. W SETI nigdy nie zakładamy, że życie i poziom rozwoju technologicznego na innych planetach są takie same jak nasze. Jednak ocena naszych możliwości pozwala zobaczyć badania prowadzone przez SETI w odpowiednim kontekście, mówi współautor badań, Macy Huston.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Węgiel i inne pierwiastki nie dryfują bezwładnie w przestrzeni kosmicznej, zauważyli naukowcy z USA i Kanady. Okazuje się, że w aktywnych galaktykach – takich jak Droga Mleczna – w których wciąż powstają nowe gwiazdy, pierwiastki są transportowane w formie wielkich strumieni. Krążą w galaktyce, wychodzą poza nią i wracają, zanim w wyniku oddziaływania grawitacji i innych sił nie utworzą planet, gwiazd, księżyców czy asteroid. To zaś oznacza, że pierwiastki w naszych organizmach, zanim do nich trafiły, mogły spędzić sporo czasu w przestrzeni międzygalaktycznej, wchodząc w skład ośrodka okołogalaktycznego (CGM).
      Pomyślmy o ośrodku okołogalaktycznym jak o wielkiej stacji kolejowej. Bez przerwy wypycha materiał na zewnątrz i go z powrotem zasysa. Ciężkie pierwiastki, które powstały w gwiazdach, są wypychane z ich galaktyk macierzystych w wyniku eksplozji supernowych i trafiają do przestrzeni międzygalaktycznej, a następnie są z powrotem wciągane do galaktyki, gdzie biorą udział w tworzeniu gwiazd i planet, mówi doktorantka Samantha Garza z University of Washington, jedna z autorek pracy opublikowanej na łamach Astrophysical Journal Letters.
      Naukowcy zauważają, że odkrycie tego procesu ma olbrzymie znaczenie dla naszego zrozumienia procesu ewolucji galaktyk. Jego implikacje dla ewolucji oraz natury dostępnych rezerwuarów węgla są ekscytujące. Ten sam węgiel, który tworzy nasze ciała, prawdopodobnie spędził dużo czasu poza galaktyką, mówi profesor Jessica Werk.
      W 2011 roku po raz pierwszy potwierdzono hipotezę, że aktywne galaktyki są otoczone przez ośrodek okołogalatyczny, olbrzymią chmurę materiału zawierającą gorące gazy. Teraz Garza, Werk i ich współpracownicy odkryli, że w ośrodku tym krążą również pierwiastki powstające w niższych temperaturach, takie jak węgiel. Możemy potwierdzić, że ośrodek okołogalaktyczny działa jak gigantyczny rezerwuar zarówno węgla jak i tlenu. I, przynajmniej w odniesieniu do galaktyk tworzących gwiazdy, uważamy, że materiał ten wraca do galaktyki w procesie recyklingu, stwierdza Garza.
      Jedna z postawionych przez naukowców hipotez mówi, że to spowolnienie lub zaprzestanie tego recyklingu pomiędzy galaktyką a ośrodkiem okołogalaktycznym jest odpowiedzialne za przerwanie procesu tworzenia się nowych gwiazd.
      Badacze wykorzystali instrument Cosmic Origin Spectrograph, który znajduje się na Teleskopie Hubble'a, do obserwacji, w jaki sposób ośrodek okołogalaktyczny 11 galaktyk tworzących gwiazdy wpływa na światło z 9 odległych kwazarów. W ten sposób odkryli, że część tego światła je pochłaniana przez węgiel znajdujący się w medium. I że tego węgla jest dużo. Okazało się również, że węgiel ten można wykryć w odległości nawet 400 tysięcy lat świetlnych od macierzystej galaktyki.
      Teraz celem naukowców jest opisanie innych pierwiastków wchodzących w skład ośrodka okołogalaktycznego, określenie różnic pomiędzy składem ośrodka wokół poszczególnych galaktyk i porównanie tego składu pomiędzy galaktykami, w których wciąż powstają gwiazdy, a tymi, w którym proces formowania gwiazd w dużej mierze się zatrzymał.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W 2023 roku średnia temperatura była niemal o 1,5 stopnia wyższa od średniej sprzed rewolucji przemysłowej. Jednak naukowcy próbujący wyjaśnić ten wzrost, mają kłopoty z określeniem jego przyczyn. Gdy bowiem biorą pod uwagę emisję gazów cieplarnianych, zjawisko El Niño czy wpływ erupcji wulkanicznych, wciąż niewyjaśnione pozostaje około 0,2 stopnia wzrostu. Uczeni z Instytutu Badań Polarnych i Morskich im. Alfreda Wegenera (AWI) zaproponowali na łamach Science wyjaśnienie tego zjawiska. Według nich te brakujące 0,2 stopnia to skutek zmniejszającego się albedo – zdolności do odbijania światła – Ziemi.
      Uczeni z AWI, we współpracy ze specjalistami od modelowania klimatu z European Centre for Medium-Range Weather Forecasts (ECMWF), przeanalizowali dane satelitarne z NASA oraz ponownie przyjrzeli się danym ECMWF. Niektóre z nich pochodziły nawet z roku 1940. Na ich podstawie sprawdzili jak przez ostatnie dziesięciolecia zmieniał się globalny budżet energetyczny oraz pokrywa chmur na różnych wysokościach. Zarówno w danych NASA, jak i ECMWF, rok 2023 wyróżniał się jako ten o najniższym albedo planetarnym. Od lat obserwujemy niewielki spadek albedo. Ale dane pokazują, że w 2023 roku albedo było najniższe od co najmniej roku 1940, mówi doktor Thomas Rackow.
      Zmniejszanie się albedo Ziemi naukowcy obserwują od lat 70. Częściowo za zjawisko to odpowiadało zmniejszanie się pokrywy lodowej oraz ilości lodu pływającego w Arktyce. Mniej śniegu i lodu oznacza, że mniej promieniowania słonecznego jest odbijane przez Ziemię. Od 2016 roku efekt ten został wzmocniony przez zmniejszanie się zasięgu lodu pływającego w Antarktyce. Jednak nasze analizy pokazywały, że spadek albedo w regionach polarnych odpowiada jedynie za 15% całkowitego spadku albedo, dodaje doktor Helge Goessling. Albedo zmniejszyło się też jednak w innych regionach planety i gdy naukowcy wprowadzili dane do modeli budżetu energetycznego stwierdzili, że gdyby nie spadek albedo od grudnia 2020, to średni temperatury w roku 2023 byłyby o 0,23 stopnie Celsjusza niższe.
      Na zmniejszenie albedo wpłynął przede wszystkim zanik nisko położonych chmur z północnych średnich szerokości geograficznych i z tropików. Szczególnie silnie zjawisko to zaznaczyło się na Atlantyku, co wyjaśniałoby, dlaczego był on tak niezwykle gorący. Pokrywa chmur na średnich i dużych wysokościach nie uległa zmianie lub zmieniła się nieznacznie.
      Chmury na wszystkich wysokościach odbijają światło słoneczne, przyczyniając się do ochłodzenia planety. Jednak te, które znajdują się w wysokich, chłodnych warstwach atmosfery, tworzą rodzaj otuliny, który zapobiega ucieczce w przestrzeń kosmiczną ciepła wypromieniowywanego przez Ziemię. Zatem utrata chmur położonych niżej oznacza, że tracimy część efektu chłodzącego, wpływ ocieplający chmur pozostaje.
      Rodzi się więc pytanie, dlaczego niżej położone chmury zanikły. Częściowo przyczyną może być mniejsza antropogeniczna emisja aerozoli, szczególnie z powodu narzucenia bardziej restrykcyjnych norm na paliwo używane przez statki. Aerozole z jednej strony biorą udział w tworzeniu się chmur, z drugiej zaś – same odbijają promieniowanie słoneczne. Jednak badacze uważają, że czystsze powietrze to nie wszystko i mamy do czynienia z bardziej niepokojącym zjawiskiem.
      Ich zdaniem to sama zwiększająca się temperatura powoduje, że na mniejszych wysokościach formuje się mniej chmur. Jeśli zaś znaczna część spadku albedo to – jak pokazują niektóre modele klimatyczne – skutek sprzężenia zwrotnego pomiędzy globalnym ociepleniem a nisko położonymi chmurami, to w przyszłości powinniśmy spodziewać się jeszcze bardziej intensywnego ocieplenia. Średnia temperatura na Ziemi może przekroczyć granicę wzrostu o 1,5 stopnia Celsjusza w porównaniu z epoką przedprzemysłową wcześniej, niż sądziliśmy, dodaje Goessling.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Woda z komety 67P/Czuriumow-Gierasimienko ma podobny stosunek deuteru i wodoru, co woda w ziemskich oceanach, poinformował międzynarodowy zespół naukowy, pracujący pod kierunkiem Kathleen E. Mandt z NASA. To zaś ponownie otwiera dyskusję na temat roli komet rodziny Jowisza w dostarczeniu wody na Ziemię. Uzyskane właśnie wyniki stoją w sprzeczności z wcześniejszymi badaniami, jednak naukowcy stwierdzili, że wcześniejsza interpretacja wyników badań wykonanych przez satelity została zafałszowana przez pył z komety.
      W gazie i pyle, z którego uformowała się Ziemia, mogło znajdować się nieco wody, jednak większość z niej została odparowana przez Słońce. Teraz, po 4,6 miliarda lat, Ziemia jest pełna wody, a naukowcy wciąż się nad jej pochodzeniem. Mamy silne dowody wskazujące na to, że została ona przyniesiona przez asteroidy. Jednak wciąż sporna pozostaje rola komet. W ciągu kilku ostatnich dekad badania komet jowiszowych – które zawierają materiał z wczesnych etapów istnienia Układu Słonecznego i powstały poza orbitą Saturna – wykazywały silny związek pomiędzy zawartą w nich wodą, a wodą na Ziemi.
      Związek ten wynikał z podobnego stosunek deuteru do wodoru. To właśnie na jego podstawie można stwierdzić, czy woda występująca na dwóch ciałach niebieskich jest podobna, czy też nie. Woda zawierająca więcej deuteru powstaje w środowisku zimnym, dalej od Słońca. Zatem ta na kometach jest mniej podobna do ziemskiej wody niż ta na asteroidach. Jednak prowadzone przez dekady badania pary wodnej z komet jowiszowych pokazywały podobieństwa do wody na Ziemi. Dlatego też naukowcy zaczęli postrzegać te komety jako ważne źródło wody na Ziemi.
      Jednak w 2014 roku przekonanie takie legło w gruzach. Wtedy to misja Rosetta, wysłana do 67P/Czuriumow-Gierasimienko przez Europejską Agencję Kosmiczną, dostarczyła unikatowych danych na temat komety. A analizujący je naukowcy zauważyli, że stosunek deuteru do wodoru jest na niej największy ze wszystkich zbadanych komet i trzykrotnie większy niż w wodzie ziemskiej. To było olbrzymie zaskoczenie, które skłoniło nas do przemyślenia wszystkiego, mówi Mandt.
      Pracujący pod jej kierunkiem zespół specjalistów z USA, Francji i Szwajcarii, w tym uczonych, którzy brali udział w misji Rosetta, jako pierwszy przeanalizował wszystkie 16 000 pomiarów wykonanych podczas europejskiej misji. Naukowcy chcieli zrozumieć, jakie procesy fizyczne powodują zmienność stosunku deuteru do wodoru w wodzie z komet. Badania laboratoryjne, obserwacje komet i analizy statystyczne wykazały, że pył z komet może wpływać na odczyty. Byłam ciekawa, czy znajdziemy dowody na to, że podobne zjawisko miało miejsce podczas badań 67P. I okazało się, że to jeden z tych rzadkich przypadków, gdy wysuwa się jakąś hipotezę i ona całkowicie się sprawdza, mówi Mandt.
      Naukowcy znaleźli wyraźny związek pomiędzy pomiarami ilości deuteru w warkoczu 67P a ilością pyłu wokół pojazdu Rosetta. To wskazywało, że część odczytów może nie być reprezentatywna dla składu komety.
      Gdy kometa zbliża się do Słońca, jej powierzchnia ogrzewa się i z powierzchni wydobywa się gaz oraz pył. Ziarna pyłu zawierają zamarzniętą wodę. Nowe badania sugerują, że woda zawierająca więcej deuteru łatwiej przylega do pyłu, niż woda jaką spotykamy na Ziemi. Gdy lód z takich ziaren pyłu jest uwalniany do warkocza komety, może powodować, że wygląda to tak, jakby woda z komety zawierała więcej deuteru niż w rzeczywistości.
      Rosetta krążyła w odległości 10–30 kilometrów od głowy komety. Mandt i jej zespół zauważyli, że do przeprowadzenia prawidłowych pomiarów składu wody z komety konieczne jest, by uwolnione do warkocza ziarna pyłu zdążyły wyschnąć. Pozbywają się one wody dopiero w odległości co najmniej 120 kilometrów od głowy komety.
      Odkrycie ma duże znaczenie nie tylko dla zrozumienia roli komet jako źródła wody na Ziemi,a le też do lepszego zrozumienia przyszłych i przeszłych badań. To świetna okazja by jeszcze raz przyjrzeć się obserwacjom z przeszłości i lepiej przygotować się do przyszłych badań, mówi Mandt.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Jeszcze do niedawna naukowcy potrafili określi miejsce pochodzenia jedynie 6% meteorytów znalezionych na Ziemi. Teraz naukowcy z francuskiego Narodowego Centrum Badań Naukowych (CNRS), Europejskiego Obserwatorium Południowego i czeskiego Uniwersytetu Karola wykazali, że 70% wszystkich znalezionych na naszej planecie meteorytów pochodzi z trzech młodych rodzin asteroid.
      Rodziny te to wyniki trzech zderzeń, do których doszło w głównym pasie asteroid 5,8, 7,5 oraz 40 milionów lat temu. Badacze określili też źródło innych meteorytów, dzięki czemu możemy teraz zidentyfikować miejsce pochodzenia ponad 90% skał, które z kosmosu spadły na Ziemię. Wyniki badań zostały opublikowane w trzech artykułach. Jeden ukazał się łamach Astronomy and Astrophysics, a dwa kolejne na łamach Nature.
      Wspomniane rodziny asteroid to – od najmłodszej do najstarszej – Karin, Koronis i Massalia. Wyróżnia się Massalia, która jest źródłem 37% meteorytów. Dotychczas na Ziemi odnaleziono podczas 700 000 okruchów z kosmosu. Jedynie 6% z nich zidentyfikowano jako achondryty pochodzące z Księżyca, Marsa lub Westy, jednego z największych asteroid głównego pasa. Źródło pozostałych 94%, z których większość do chondryty, pozostawało nieznane.
      Jak to jednak możliwe, że źródłem większości znalezionych meteorytów są młode rodziny asteroid? Autorzy badań wyjaśniają, że rodziny takie charakteryzują się dużą liczbą niewielkich fragmentów powstałych w wyniku niedawnych kolizji. Ta obfitość zwiększa prawdopodobieństwo kolejnych zderzeń, co w połączeniu z duża mobilnością tych szczątków, powoduje, że mogą zostać wyrzucone z głównego pasa asteroid, a część z nich poleci w kierunku Ziemi. Starsze rodziny asteroid nie są tak liczne. Przez wiele milionów lat mniejsze fragmenty, ale na tyle duże, że mogłyby spaść na Ziemię, zniknęły w wyniku kolejnych zderzeń i ucieczki z pasa asteroid.
      Określenie pochodzenia większości meteorytów było możliwe dzięki teleskopowym badaniom składu większości rodzin asteroid w głównym pasie oraz zaawansowanymi symulacjami komputerowymi, podczas których badano dynamikę tych rodzin.
      Autorzy badań określili też pochodzenie wielkich asteroid, takich jak Ryugu czy Bennu. Okazało się, że pochodzą one od tego samego przodka co rodzina asteroid Polana.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...