Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Astronomowie obserwują trzy łączące się supermasywne czarne dziury

Recommended Posts

Astronomowie obserwują ostatnie etapy łączenia się trzech supermasywnych czarnych dziur. Krążą one wokół siebie w centrum trzech galaktyk, do połączenia których dochodzi w odległości około miliarda lat świetlnych od Ziemi. Niezwykły taniec czarnych dziur specjaliści zauważyli wewnątrz obiektu SDSS J084905.51+111447.2.

Obserwowaliśmy parę czarnych dziur, a gdy użyliśmy kolejnych technik [obrazowania rentgenowskiego o wysokiej rozdzielczości przestrzennej, obrazowania w bliskiej podczerwieni oraz spektroskopii optycznej – red.] znaleźliśmy ten niezwykły system, mówi główny autor badań, Ryan Pfeifle z George Mason University. Mamy tutaj najsilniejsze z dostępnych dowodów na istnienie systemu trzech aktywnych supermasywnych czarnych dziur.

Badania wspomnianego systemu rozpoczęły się od jego obrazowania w świetle widzialnym za pomocą teleskopu Sloan Digital Sky Survey (SDSS) w Nowym Meksyku. Dane udostępniono w społecznościowym projekcie Galaxy Zoo, którego użytkownicy oznaczyli SDSS J084905.51+111447.2 jako miejsce, w którym właśnie dochodzi do łączenia się czarnych dziur. Naukowcy przeanalizowali więc dane zebrana przez teleskop kosmiczny Wide-field Infrared Survey Explorer (WISE). Pracuje on w podczerwieni i jeśli rzeczywiście w galaktyce dochodzi do łączenia się czarnych dziur, to powinien on zaobserwować co najmniej dwa źródła gwałtownego pochłaniania materii. Kolejne obserwacje potwierdziły podejrzenia. Chandra X-ray Observatory wykrył istnienie silnych źródeł promieniowania X, co wskazuje, że czarne dziury pochłaniają tam duże ilości pyłu i gazu. Podobne dowody zdobył Nuclear Spectroscopic Telescope Array (NuSTAR). Kolejne obrazowanie w świetle widzialnym przeprowadzone za pomocą SDSS i Large Binocular Telescope potwierdziły obecność trzech aktywnych czarnych dziur.

Dzięki użyciu wielu instrumentów opracowaliśmy nową technikę identyfikowania potrójnych układów supermasywnych czarnych dziur. Każdy z tych teleskopów dostarczył nam nieco innych informacji o tym, co się tam dzieje. Mamy nadzieję, że za pomocą tej techniki znajdziemy więcej układów potrójnych, mówi Pfeifle.

Naukowcy stwierdzili, że odległość pomiędzy każdą z czarnych dziur, a jej sąsiadami wynosi od 10 do 30 tysięcy lat świetlnych. Będzie ona malała, gdyż galaktyki, do których należą te dziury, łączą się, więc i czarne dziury są skazane na połączenie.
Dzięki wykryciu przez LIGO fal grawitacyjnych pochodzących z łączenia się czarnych dziur, wiemy co nieco o tym, jak przebiega taki proces. Jednak łączenie się układu potrójnego wygląda prawdopodobnie nieco inaczej. Specjaliści podejrzewają, że obecność trzeciej dziury powoduje, iż dwie pierwsze łączą się znacznie szybciej.

Istnienie układu potrójnego może pozwolić też na wyjaśnienie teoretycznego „problemu ostatniego parseka”. Gdy dochodzi do połączenia dwóch galaktyk ich czarne dziury nie zderzają się czołowo, ale powinny minąć się po orbicie hiperbolicznej. Musi istnieć mechanizm, który spowoduje, że zbliżą się do siebie. Najważniejszym takim mechanizmem jest dynamiczne tarcie. Gdy czarna dziura zbliża się do gwiazdy, gwiazda jest przyspieszana, a czarna dziura spowalniana. Mechanizm ten spowalnia czarne dziury na tyle, że tworzą powiązany ze sobą układ podwójny. Dynamiczne tarcie nadal działa, dziury zbliżają się do siebie na odległość kilku parseków. Jednak proces krążenia czarnych dziur wokół siebie powoduje, że w pobliżu zaczyna brakować materii. W końcu jest jej tak mało, że jej oddziaływanie nie wystarczy, by dziury się połączyły.

Ostatecznie do połączenia się czarnych dziur mogłyby doprowadzić fale grawitacyjne, ale ich oddziaływanie ma znaczenie dopiero, gdy dziury zbliżą się do siebie na odległość 0,01–0,001 parseka. Wiemy jednak, że czarne dziury się łączą, pozostaje więc pytanie, co rozwiązuje problem ostatniego parseka, czyli co powoduje, że zbliżą się do siebie na tyle, iż utworzą jedną czarną dziurę. Obecność trzeciej czarnej dziury wyjaśniałaby, jaka siła powoduje, że czarne dziury się łączą.

Nie można też wykluczyć, że w układach potrójnych dochodzi nie tylko do połączenia się dwóch czarnych dziur, ale i do wyrzucenia trzeciej z nich w przestrzeń kosmiczną.


« powrót do artykułu

Share this post


Link to post
Share on other sites
12 godzin temu, KopalniaWiedzy.pl napisał:

Gdy dochodzi do połączenia dwóch galaktyk ich czarne dziury nie zderzają się czołowo, ale zaczynają krążyć wokół siebie po orbitach hiperbolicznych.

Nie rozumiem tego... Wydawało mi się, że orbita hiperboliczna, to orbita po której dane ciało jednokrotnie zbliża się po hiperboli (albo krzywej do niej podobnej) do innego ciała i oddala od niego na zawsze. Jak rozumieć krążenie wokół siebie po orbitach hiperbolicznych? Czy to na pewno jest poprawny opis?

Share this post


Link to post
Share on other sites

Cóż. Patrzę przykładowo na:
https://www.nasa.gov/mission_pages/chandra/images/found-three-black-holes-on-collision-course.html
czy po polsku ładnie
https://www.urania.edu.pl/wiadomosci/trzy-czarne-dziury-na-kursie-kolizyjnym
oraz do pracy źródłowej zamieszczonej w ApJ (jak rozumiem podając źródło Mariusz przeczytał to źródło; swoją drogą obrazek w publikacji na KW nie pochodzi ze źródła):
https://arxiv.org/pdf/1908.01732.pdf
i mam problem...

15 godzin temu, KopalniaWiedzy.pl napisał:

Gdy dochodzi do połączenia dwóch galaktyk ich czarne dziury nie zderzają się czołowo, ale powinny minąć się po orbicie hiperbolicznej.

Kto i gdzie tak stwierdził? Przecież zapewne zależy to od prędkości kolizji, parametrów zderzenia i pewnie kupy innych czynników. W pracy źródłowej (nie czytałem szczegółowo, tylko rzuciłem okiem) raczej nic takiego nie ma. Zderzające się galaktyki mogą sprawić, że centralne BH polubią się i nie pojadą tropem orbit hiperbolicznych, a dość szerokich eliptycznych.

Share this post


Link to post
Share on other sites
Guest kremien
1 hour ago, Mariusz Błoński said:

W pracy źródłowej tego nie ma. To nasz dodatek, wyjaśniający, czym jest problem ostatniego parseka.

A ja dziękuję za te wyjaśnienie. Chciałem tego już szukać, a tu samo się znalazło ;)

Share this post


Link to post
Share on other sites
10 godzin temu, Mariusz Błoński napisał:

To nasz dodatek, wyjaśniający, czym jest problem ostatniego parseka.

Cóż, gdyby dwie BH minęły się torem hiperbolicznym, to problem ostatniego parseka w ogóle by nie istniał.

Chodzi raczej o tę trzecią, która nie mija od razu po hiperboli, a kosztem energii orbitalnej ciaśniejszego układu dwóch BH może wystrzelić właśnie z układu.

Share this post


Link to post
Share on other sites

Owszem, by nie istniał, dlatego potrzebne jest coś, co je spowolni. Ale nawet to coś może być zbyt mało, bo mogą wokół siebie krążyć dłużej niż wiek wszechświata. Obecność trzeciej wyjaśnia. Zastanawiające, czy jest to jedyne wyjaśnianie i czy zawsze potrzebna jest trzecia, by dwie się połączyły?

 

Share this post


Link to post
Share on other sites
5 godzin temu, Mariusz Błoński napisał:

Owszem, by nie istniał, dlatego potrzebne jest coś, co je spowolni.

Byłby to problem pierwszych stu parseków, a nie ostatniego parseka. :)

Jak na poniższych ruchomych obrazkach nie jest to problem:
https://www.youtube.com/watch?v=DxYwdgHpbKM

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Astronauci przebywający na Międzynarodowej Stacji Kosmicznej ewakuowali się na pokład pojazdu Sojuz, a sama stacja wykonała manewr obronny, by uniknąć zderzenia ze swobodnie poruszającym się obiektem. Co prawda miał on przelecieć w odległości kilkunastu kilometrów od ISS, jednak na wszelki wypadek dwóch Rosjan i Amerykanina ewakuowano, a stację przesunięto.
      Manewr zakończono, a astronauci mogli wyjść z bezpiecznego miejsca, poinformował na Twitterze szef NASA, Jim Bridenstine. Do zbliżenia się obiektu do stacji doszło dzisiaj o godzinie 00:21 czasu polskiego.
      Międzynarodowa Stacja Kosmiczna znajdujesię na wysokości 420 kilometrów nad Ziemią i porusza się z prędkością 27 568 km/h. Przy tej prędkości zderzenie nawet z niewielkim obiektem może dokonać poważnych zniszczeń.
      W latach 1999–2018 ISS wykonała 25 manewrów w celu uniknięcia zderzenia ze zbliżającymi się obiektami.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wykorzystując sztuczną inteligencję, po raz pierwszy udało się znaleźć zlewające się pary galaktyk przy użyciu identycznej metody zarówno w symulacjach, jak i obserwacjach prawdziwego wszechświata. Współautorem pionierskiej pracy jest dr William Pearson z Zakładu Astrofizyki Departamentu Badań Podstawowych NCBJ.
      Ostatnia Nagroda Nobla pokazała, jak ważną i fascynującą dziedziną jest astrofizyka. Wielu naukowców od lat próbuje odkryć tajemnice wszechświata, jego przeszłość i przyszłość. Teraz po raz pierwszy udało im się znaleźć zlewające się pary galaktyk przy użyciu identycznej metody zarówno w symulacjach, jak i obserwacjach prawdziwego wszechświata (wykorzystano do tego sztuczną inteligencję).
      W badaniach prowadzonych przez Lingyu Wang (Holenderski Instytut Badań Kosmicznych, SRON), Vicente Rodrigueza-Gomeza (Instytut Radioastronomii i Astrofizyki, IRyA) oraz Williama J. Pearsona (Narodowe Centrum Badań Jądrowych, NCBJ) zastosowano pionierską metodę identyfikacji zderzających się galaktyk zarówno w symulacjach, jak i w obserwacjach rzeczywistego wszechświata.
      Zderzenia galaktyk nie są niczym nowym, od początku powstania wszechświata galaktyki zderzają się ze sobą, często łącząc się w jedną większą galaktykę. Wiadomo, że większość znanych nam galaktyk uczestniczyła w co najmniej kilku takich zderzeniach w ciągu swojego życia. Proces zderzania się galaktyk trwa zwykle setki milionów lat. To ważny aspekt historii naszego wszechświata, który możemy zobaczyć też na własne oczy, np. dzięki zdjęciom z teleskopu Hubble'a.
      Identyfikacja zderzających się galaktyk nie jest jednak prosta. Proces ten możemy badać albo symulując całe wydarzenie i analizując jego przebieg, albo obserwując je w realnym świecie. W przypadku symulacji jest to proste: wystarczy śledzić losy konkretnej galaktyki i sprawdzać, czy i kiedy łączy się z inną galaktyką. W prawdziwym wszechświecie sprawa jest trudniejsza. Ponieważ zderzenia galaktyk są rzadkie i trwają miliardy lat, w praktyce widzimy tylko jeden "moment" z całego długiego procesu zderzenia. Astronomowie muszą dokładnie zbadać obrazy galaktyk, aby ocenić, czy znajdujące się na nich obiekty wyglądają tak, jakby się zderzały lub niedawno połączyły.
      Symulacje można porównać z prowadzeniem kontrolowanych eksperymentów laboratoryjnych. Dlatego są potężnym i użytecznym narzędziem do zrozumienia procesów zachodzących w galaktykach. Dużo więcej wiemy na temat zderzeń symulowanych niż zderzeń zachodzących w prawdziwym wszechświecie, ponieważ w przypadku symulacji możemy prześledzić cały długotrwały proces zlewania się konkretnej pary galaktyk. W prawdziwym świecie widzimy tylko jeden etap całego zderzenia.
      Wykorzystując obrazy z symulacji, jesteśmy w stanie wskazać przypadki zderzeń, a następnie wytrenować sztuczną inteligencję (AI), aby była w stanie zidentyfikować galaktyki w trakcie takich zderzeń – wyjaśnia dr William J. Pearson z Zakładu Astrofizyki NCBJ, współautor badań. Aby sztuczna inteligencja mogła spełnić swoje zadanie, obrazy symulowanych galaktyk przetworzyliśmy tak, żeby wyglądały, jakby były obserwowane przez teleskop. Naszą AI przetestowaliśmy na innych obrazach z symulacji, a potem zastosowaliśmy ją do analizy obrazów prawdziwego wszechświata w celu wyszukiwania przypadków łączenia się galaktyk.
      W badaniach sprawdzono, jak szanse na prawidłową identyfikację zderzającej się pary galaktyk zależą m.in. od masy galaktyk. Porównywano wyniki oparte na symulacjach i rzeczywistych danych. W przypadku mniejszych galaktyk AI poradziła sobie równie dobrze w przypadku obrazów symulowanych i rzeczywistych. W przypadku większych galaktyk pojawiły się rozbieżności, co pokazuje, że symulacje zderzeń masywnych galaktyk nie są wystarczająco realistyczne i wymagają dopracowania.
      Artykuł zatytułowany Towards a consistent framework of comparing galaxy mergers in observations and simulations został przyjęty do publikacji w czasopiśmie Astronomy & Astrophysics.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Polsko-niemiecki zespół naukowy zaobserwował niedawno grupę gwiazd najbliższych czarnej dziurze w Drodze Mlecznej i stwierdził, że znajduje się wśród nich najszybsza znana nam gwiazda.  Niektóre z badanych gwiazd znajdują się wewnątrz orbity gwiazdy S2, która jeszcze do niedawna była uważana za najbliższą czarnej dziurze w Drodze Mlecznej.
      Czarna dziura znajdująca się w centrum naszej galaktyki nosi nazwę Sagittarius A* (Sgr A*), dlatego też pobliskim jej gwiazdom nadano nazwy od S4711 do S4715. Gwiazdy te badał Michał Zajączek z Centrum Fizyki Teoretycznej w Warszawie we współpracy z naukowcami z Uniwersytetu w Kolonii i Instytutu Radioastronomii im. Maxa Plancka.
      Z grupy tej najbardziej interesujące okazały się S4711 oraz S4714. Badania wykazały, że S4711 ma masę 2,2 mas Słońca i okrąża czarną dziurę w ciągu zaledwie 7,6 roku i zbliża się do niej na odległość zaledwie 143,7 (± 18,8) jednostek astronomicznych. Jest więc gwiazdą o najkrótszym okresie orbitalnym i najmniejszej średniej odległości do Sgr A*.
      Z kolei S4714 jest najszybszą znaną nam gwiazdą. Co prawda okrąża ona czarną dziurę w ciągu 12 lat, jednak jej orbita jest eliptyczna, dzięki czemu przez dłuższy czas jest poddawana większemu oddziaływaniu ze strony Sgr A*. Z przeprowadzonych badań wynika, że S4714 zbliża się do Sgr A* na odległość zaledwie 12,6 j.a. (± 9,3 j.a.). W takiej odległości osiąga gigantyczną prędkość 23 928 km/s (± 8840 km/s), co stanowi aż 8% prędkości światła.
      Szczegóły badań opublikowano w artykule S62 and S4711: Indications of a population of faint fast moving stars inside the S2 orbitS4711 on a 7.6 year orbit around Sgr A*.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Czarnych dziur nie możemy bezpośrednio obserwować. Widzimy jednak gaz i pył, które świecą, gdy są przez nie wchłaniane. Wciągana do czarnej dziury materia wiruje na podobieństwo wody wpływającej do dziury, a nad i pod dziurą pojawia się tzw. korona, zbudowana z jasno świecącego ultragorącego gazu. Przed dwoma laty astronomowie ze zdumieniem zaobserwowali, że korona czarnej dziury w galaktyce 1ES 1927+654 szybko zniknęła, a później równie szybko jest pojawiła.
      Korony czarnych dziur mogą zmieniać jasność nawet 100-krotnie. Jednak w naszym przypadku doszło do bezprecedensowego wydarzenia. W ciągu zaledwie 40 dni jasność korony zmniejszyła się 10 000 razy. Niemal natychmiast korona zaczęła świecić coraz mocniej i po kolejnych 100 dniach jej blask był 20-krotniej silniejszy niż przed przygasaniem.
      Jako, że blask korony jest bezpośrednio związany z materią wchłanianą przez czarną dziurę, zaobserwowane zjawisko świadczyło o tym, że źródło materii zostało odcięte. Jednak co mogło być przyczyną tak spektakularnego wydarzenia?
      Międzynarodowy zespół astronomów z Izraela, USA, Wielkiej Brytanii, Chin, Kanady i Chile uważa, że przyczyną czasowego zniszczenia korony była zabłąkana gwiazda. Znalazła się ona zbyt blisko czarnej dziury i została rozerwana przez siły pływowe. Jej szybko poruszające się szczątki mogły spaść na dysk gazu otaczającego dziurę i chwilowo go rozproszyć.
      Zwykle nie obserwujemy tak dużych zmian w dysku akrecyjnym czarnej dziury, mówi główny autor badań, profesor Claudio Ricci z chilijskiego Uniwersytetu im. Diego Portalesa. To było tak dziwne, że początkowo sądziliśmy, iż coś jest nie tak z naszymi danymi. Gdy stwierdziliśmy, że są one prawidłowe, poczuliśmy dużą ekscytację. Nie mieliśmy jednak pojęcia, z czym mamy do czynienie. NIkt, z kim rozmawialiśmy, nie obserwował wcześniej takiego zjawiska.
      Hipotezę o rozerwanej gwieździe wzmacnia fakt, że kilka miesięcy przed zniknięciem korony zauważono, że dysk akrecyjny badanej czarnej dziury nagle pojaśniał w paśmie widzialnym. Być może był to wynik pierwszego zderzenia z resztkami gwiazdy.
      Najnowsze odkrycie jest również o tyle cenne, że naukowcy mogli całe zjawisko obserwować w czasie rzeczywistym. Oczywiście uwzględniając fakt, że galaktyka 1ES 1927+654 znajduje się w odległości 300 milionów lat świetlnych od Ziemi. Kiedy bowiem obserwatoria doniosły o pojaśnieniu dysku akrecyjnego zespół Ricciego zaczął obserwować czarną dziurę za pomocą kilku narzędzi. Wykorzystano teleskop NICER znajdujący się na Międzynarodowej Stacji Kosmicznej, Neil Gehrels Swift Observatory, NuSTAR oraz XMM-Newton. Wszystkie one zapewniały ciągły napływ danych przez wiele miesięcy, co pozwoliło na obserwowanie zniknięcia i pojawienia się korony.
      Autorzy badań nie wykluczają, że mogą istnieć inne wyjaśnienia obserwowanego zjawiska. Podkreślają, że jedną z wyróżniających się cech tego, co obserwowali był fakt, że spadek jasności korony nie był liniowy. Zmiany zachodziły w różnym tempie, czasami jasność korony spadała 100-krotnie w czasie zaledwie 8 godzin. Wiadomo, że korony czarnych dziur mogą tak bardzo zmieniać jasność, jednak w znacznie dłuższym czasie. Tak dramatyczne skoki, do których dochodziło całymi miesiącami, to coś niezwykłego.
      Te dane wciąż stanowią zagadkę. Ale to niezwykle ekscytujące, gdyż oznacza, że uczymy się czegoś nowego o wszechświecie. Sądzimy, że hipoteza o gwieździe jest dobra, ale wiemy, że jeszcze przez długi czas będziemy to analizowali, mówi współautor badań profesor Erin Kara z MIT.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Japoński akcelerator cząstek SuperKEKB pobił światowy rekord jasności. Pracujący przy nim naukowcy obiecują, że to dopiero początek. W ciągu najbliższych lat chcą zwiększyć jasność urządzenia aż 40-krotnie, co ma pozwolić zarówno na odkrycie ciemnej materii, jak i wyjście z fizyką poza Model Standardowy. Mamy nadzieję, że akcelerator pozwoli nam wykryć ciemną materię – o ile ona istnieje – i badać ją w niedostępny obecnie sposób, mówi profesor Kay Kinoshita z University of Cincinnati.
      Jasność akceleratora to liczba kolizji, która w nim zachodzi. Podczas tych zderzeń powstają nowe cząstki. Im więc więcej zderzeń, tym więcej cząstek, więcej danych i większa szansa n a zarejestrowanie czegoś nowego.
      SuperKEKB zderza pozytony i elektrony przyspieszane w 3-kilometrowym tunelu. Akcelerator został uruchomiony w 2018 roku i naukowcy ciągle pracują nad zwiększaniem jego jasności. Profesor Alan Schwartz i jego studenci z University of Cincinnati zaprojektowali i zbudowali jeden z detektorów akceleratora. To krok milowy w projektowaniu akceleratorów. SuperKEKB wykorzystuje architekturę tzw. „nano strumieni”. W technice tej strumienie cząstek są ściskane wzdłuż osi pionowej, dzięki czemu są bardzo cienkie, wyjaśnia Schwartz. To pierwszy na świecie akcelerator, który korzysta z tej techniki.
      Ze względu na rozmiary cząstek, szansa, że dojdzie do zderzenia, jest niewielka. Im bardziej ściśnięty strumień, tym większe zagęszczenie cząstek i tym większe prawdopodobieństwo zderzeń. Obecnie wysokość wiązki w punkcie zderzenia wynosi 220 nanometrów. W przyszłości ma to być zaledwie 50 manometrów, czyli około 1/1000 grubości ludzkiego włosa.
      Profesor Kay Kinoshita poświęciła całą swoją naukową karierę zagadnieniu zwiększania jasności akceleratorów. Uczona pracuje nad tym zagadnieniem od 1982 roku. To bardzo interesujące, gdyż jest bardzo wymagające. Wiesz, że robisz coś, czego nikt nigdy nie zrobił, mówi.
      Poprzednik SuperKEKB, akcelerator KEKB, który działał w latach 1999–2010 w KEK (Organizacja Badań nad Akceleratorami Wysokich Energii), również był światowym rekordzistą. Urządzenie pracowało z jasnością 2,11x1034 cm-2s-1. Dopiero w 2018 roku rekord ten został pobity przez Wielki Zderzacz Hadronów, który osiągnął jasność 2,14x1034 cm-2s-1. Rekord LHC nie utrzymał się długo, dnia 15 czerwca 2020 roku SuperKEKB osiągnął jasność 2,22x1034 cm-2s-1. Już tydzień później, 21 czerwca naukowcy poinformowali o nowym rekordzie. Teraz SuperKEKB pracuje z jasnością wynoszącą 2,40x1034 cm-2s-1.
      W ciągu najbliższych lat jasność SuperKEKB ma wzrosnąć 40-krotnie. Docelowo ma ona wynieść 8x1035 cm-2s-1.
      Sukces SuperKEKB to sukces międzynarodowej współpracy. Nadprzewodzące magnesy, które ostatecznie skupiają strumienie cząstek zostały zbudowane we współpracy z amerykańskimi Brookhaven National Laboratory oraz Fermi National Accelerator Laboratory. Systemy monitorowania kolizji to dzieło SLAC National Accelerator Laboratory i University of Hawaii. Naukowcy ze Szwajcarii (CERN), Francji (IJCLab), Chin (IHEP) i USA (SLAC) biorą udział w pracach i badaniach, w których wykorzystywany jest akcelerator. Wykorzystujący diament system monitorowania promieniowania oraz system przerywania wiązki to dzieło włoskich Narodowego Instytutu Fizyki Jądrowej oraz Uniwersytetu w Trieście, a system monitorowania jasności powstał w Rosji.
      Wiązki elektronów i pozytonów rozpędzane w SuperKEKB zderzają się w centrum detektora Belle II, który opisywaliśmy przed 2 laty. To niezwykłe urządzenie zostało zbudowane przez grupę 1000 fizyków i inżynierów ze 119 uczelni z 26 krajów świata. I to właśnie wewnątrz Belle II naukowcy mają nadzieję znaleść ciemną materię i rozpocząć badania jej właściwości.

      « powrót do artykułu
×
×
  • Create New...