Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Astronomowie obserwują trzy łączące się supermasywne czarne dziury

Rekomendowane odpowiedzi

Astronomowie obserwują ostatnie etapy łączenia się trzech supermasywnych czarnych dziur. Krążą one wokół siebie w centrum trzech galaktyk, do połączenia których dochodzi w odległości około miliarda lat świetlnych od Ziemi. Niezwykły taniec czarnych dziur specjaliści zauważyli wewnątrz obiektu SDSS J084905.51+111447.2.

Obserwowaliśmy parę czarnych dziur, a gdy użyliśmy kolejnych technik [obrazowania rentgenowskiego o wysokiej rozdzielczości przestrzennej, obrazowania w bliskiej podczerwieni oraz spektroskopii optycznej – red.] znaleźliśmy ten niezwykły system, mówi główny autor badań, Ryan Pfeifle z George Mason University. Mamy tutaj najsilniejsze z dostępnych dowodów na istnienie systemu trzech aktywnych supermasywnych czarnych dziur.

Badania wspomnianego systemu rozpoczęły się od jego obrazowania w świetle widzialnym za pomocą teleskopu Sloan Digital Sky Survey (SDSS) w Nowym Meksyku. Dane udostępniono w społecznościowym projekcie Galaxy Zoo, którego użytkownicy oznaczyli SDSS J084905.51+111447.2 jako miejsce, w którym właśnie dochodzi do łączenia się czarnych dziur. Naukowcy przeanalizowali więc dane zebrana przez teleskop kosmiczny Wide-field Infrared Survey Explorer (WISE). Pracuje on w podczerwieni i jeśli rzeczywiście w galaktyce dochodzi do łączenia się czarnych dziur, to powinien on zaobserwować co najmniej dwa źródła gwałtownego pochłaniania materii. Kolejne obserwacje potwierdziły podejrzenia. Chandra X-ray Observatory wykrył istnienie silnych źródeł promieniowania X, co wskazuje, że czarne dziury pochłaniają tam duże ilości pyłu i gazu. Podobne dowody zdobył Nuclear Spectroscopic Telescope Array (NuSTAR). Kolejne obrazowanie w świetle widzialnym przeprowadzone za pomocą SDSS i Large Binocular Telescope potwierdziły obecność trzech aktywnych czarnych dziur.

Dzięki użyciu wielu instrumentów opracowaliśmy nową technikę identyfikowania potrójnych układów supermasywnych czarnych dziur. Każdy z tych teleskopów dostarczył nam nieco innych informacji o tym, co się tam dzieje. Mamy nadzieję, że za pomocą tej techniki znajdziemy więcej układów potrójnych, mówi Pfeifle.

Naukowcy stwierdzili, że odległość pomiędzy każdą z czarnych dziur, a jej sąsiadami wynosi od 10 do 30 tysięcy lat świetlnych. Będzie ona malała, gdyż galaktyki, do których należą te dziury, łączą się, więc i czarne dziury są skazane na połączenie.
Dzięki wykryciu przez LIGO fal grawitacyjnych pochodzących z łączenia się czarnych dziur, wiemy co nieco o tym, jak przebiega taki proces. Jednak łączenie się układu potrójnego wygląda prawdopodobnie nieco inaczej. Specjaliści podejrzewają, że obecność trzeciej dziury powoduje, iż dwie pierwsze łączą się znacznie szybciej.

Istnienie układu potrójnego może pozwolić też na wyjaśnienie teoretycznego „problemu ostatniego parseka”. Gdy dochodzi do połączenia dwóch galaktyk ich czarne dziury nie zderzają się czołowo, ale powinny minąć się po orbicie hiperbolicznej. Musi istnieć mechanizm, który spowoduje, że zbliżą się do siebie. Najważniejszym takim mechanizmem jest dynamiczne tarcie. Gdy czarna dziura zbliża się do gwiazdy, gwiazda jest przyspieszana, a czarna dziura spowalniana. Mechanizm ten spowalnia czarne dziury na tyle, że tworzą powiązany ze sobą układ podwójny. Dynamiczne tarcie nadal działa, dziury zbliżają się do siebie na odległość kilku parseków. Jednak proces krążenia czarnych dziur wokół siebie powoduje, że w pobliżu zaczyna brakować materii. W końcu jest jej tak mało, że jej oddziaływanie nie wystarczy, by dziury się połączyły.

Ostatecznie do połączenia się czarnych dziur mogłyby doprowadzić fale grawitacyjne, ale ich oddziaływanie ma znaczenie dopiero, gdy dziury zbliżą się do siebie na odległość 0,01–0,001 parseka. Wiemy jednak, że czarne dziury się łączą, pozostaje więc pytanie, co rozwiązuje problem ostatniego parseka, czyli co powoduje, że zbliżą się do siebie na tyle, iż utworzą jedną czarną dziurę. Obecność trzeciej czarnej dziury wyjaśniałaby, jaka siła powoduje, że czarne dziury się łączą.

Nie można też wykluczyć, że w układach potrójnych dochodzi nie tylko do połączenia się dwóch czarnych dziur, ale i do wyrzucenia trzeciej z nich w przestrzeń kosmiczną.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
12 godzin temu, KopalniaWiedzy.pl napisał:

Gdy dochodzi do połączenia dwóch galaktyk ich czarne dziury nie zderzają się czołowo, ale zaczynają krążyć wokół siebie po orbitach hiperbolicznych.

Nie rozumiem tego... Wydawało mi się, że orbita hiperboliczna, to orbita po której dane ciało jednokrotnie zbliża się po hiperboli (albo krzywej do niej podobnej) do innego ciała i oddala od niego na zawsze. Jak rozumieć krążenie wokół siebie po orbitach hiperbolicznych? Czy to na pewno jest poprawny opis?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość kremien
1 hour ago, Mariusz Błoński said:

W pracy źródłowej tego nie ma. To nasz dodatek, wyjaśniający, czym jest problem ostatniego parseka.

A ja dziękuję za te wyjaśnienie. Chciałem tego już szukać, a tu samo się znalazło ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Owszem, by nie istniał, dlatego potrzebne jest coś, co je spowolni. Ale nawet to coś może być zbyt mało, bo mogą wokół siebie krążyć dłużej niż wiek wszechświata. Obecność trzeciej wyjaśnia. Zastanawiające, czy jest to jedyne wyjaśnianie i czy zawsze potrzebna jest trzecia, by dwie się połączyły?

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Przed czterema laty informowaliśmy, że NASA wybrała przyszłą misję, która pozwoli lepiej zrozumieć ewolucję wszechświata oraz zbadać, na ile powszechne w naszej galaktyce są podstawowe składniki niezbędne do powstania życia. Misja SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) wystartowała 11 marca i właśnie przysłała pierwsze zdjęcia. W ciągu dwóch lat pracy ma dostarczyć danych o ponad 450 milionach galaktyk i ponad 100 milionach gwiazd w Drodze Mlecznej.
      Mimo, że zdjęcia pochodzą z nieskalibrowanych jeszcze instrumentów, więc nie nadają się więc do prowadzenia badań, pokazują niezwykłe możliwości misji i – przede wszystkim – dowodzą, iż czujniki działają. Na każdym z sześciu obrazów, po jednym dla każdego z wyspecjalizowanych detektorów, widzimy jasne źródła światła, jak galaktyki czy gwiazdy. Każdy z nich powinien zawierać ponad 100 000 takich źródeł. Trzy górne obrazy prezentują ten sam obszar nieboskłonu, co trzy dolne. Widzimy tutaj pełne pole widzenia SPHEREx. To prostokątny obszar około 20-krotnie szerszy niż Księżyc w pełni widziany z Ziemi. Gdy w drugiej połowie kwietnia SPHEREx rozpocznie badania naukowe, będzie wykonywał około 600 takich ujęć na dobę.
      Najnowszy teleskop NASA działa w podczerwieni i wykorzystuje 102 filtry, po 17 dla każdego z czujników. Dzięki temu, badając unikatową sygnaturę światła, będzie mógł wykrywać różne związki chemiczne i molekuły. Urządzenie pomoże też mierzyć odległość do zaobserwowanych obiektów, co pozwoli na badanie odległych galaktyk i tworzenie trójwymiarowej mapy wszechświata.
      Zanim jednak SPHEREx przystąpi do badań, musi zostać odpowiednio przygotowany. Przez ostatnie dwa tygodnie inżynierowie z JPL (Jet Propulsion Laboratory), którzy zarządzają misją, sprawdzali stan teleskopu. Dotychczas wszystko działa bez zarzutu.
      Obecnie trwa schłodzenie czujników i innego sprzętu do docelowej temperatury roboczej około -210 stopni Celsjusza. Bez osiągnięcia tak niskiej temperatury promieniowanie cieplne samego teleskopu uniemożliwiłoby rejestrowanie obrazu w podczerwieni. Co interesujące, chłodzenie jest całkowicie pasywne. SPHEREx nie wykorzystuje w tym celu elektryczności czy specjalnych chłodziw, dzięki czemu był tańszy i prostszy w budowie. A chłodzi się dzięki trzem stożkowatym osłonom, które chronią urządzenia przed ciepłem Słońca oraz Ziemi oraz specjalnym lustrom, które odbijają promieniowanie cieplne urządzeń bezpośrednio w przestrzeń kosmiczną.
      Przesłane obrazy testowe dowiodły, że czujniki teleskopu zostały dobrze ustawione i zapewniają ostry obraz. To bardzo dobra informacja, gdyż odpowiedniego dostrojenia ostrości można było dokonać jedynie na Ziemi. W przestrzeni kosmicznej nie można już tego zmienić. Z tego, co widzimy na zdjęciach wynika, że zespół odpowiedzialny za instrumenty idealnie wykonał swoją robotę, cieszy się Jamie Bock, główny naukowiec misji.
      SPHEREx zapewni naukowcom ogólny przegląd nieboskłonu. O ile teleskopy takie jak Webb czy Hubble badają bardzo szczegółowo niewielki wycinek nieba, SPHEREx zapewnia bardzo szeroki widok. Posłuży zresztą między innymi do określania celów obserwacyjnych dla bardziej precyzyjnych urządzeń. Możliwości nowego teleskopu są tak duże, że w ciągu dwóch lat aż czterokrotnie sfotografuje on całe niebo.
      Program Explorer, w ramach którego powstał SPHEREx, to najstarszy wciąż kontynuowany program naukowy NASA. Pierwszą misją, jaką przeprowadzono w jego ramach, była Explorer 1 wystrzelona w 1958 roku. Dotychczas w ramach programu przeprowadzono około 100 misji w przestrzeni kosmicznej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Czarne dziury od dziesięcioleci fascynują naukowców, pisarzy i zwykłych zjadaczy chleba. Zgodnie z ogólną teorią względności Einsteina, wszystko, co dostaje się do czarnej dziury opada do jej centrum i zostaje tam zniszczone przez gigantyczną grawitację. Centrum to, zwane osobliwością, to nieskończenie mały punkt, w którym przyspieszenie grawitacyjne jest nieskończone. Tam skupia się cała materia czarnej dziury.
      Na łamach Physical Review Letters ukazał się artykuł autorstwa Steffena Gielena z University of Sheffield i Lucíi Menéndez-Pidal z Universidad Complutense de Madrid, którzy stwierdzają, że osobliwość nie oznacza końca, a raczej nowy początek. Tym nowym początkiem mają być białe dziury, w które zmieniają się czarne dziury.
      Para uczonych wykorzystała mechanikę kwantową oraz uproszczony teoretyczny model płaskiej dwuwymiarowej czarnej dziury. Od dawna zastanawiano się, czy mechanika kwantowa może zmienić nasze rozumienie czarnych dziur i pozwolić nam zajrzeć w głąb ich prawdziwej natury. Z punktu widzenia mechaniki kwantowej czas nie może się skończyć, gdyż układy ciągle zmieniają się i ewoluują, stwierdza Gielen. Naukowcy pokazali jak, za pomocą praw mechaniki kwantowej, osobliwość wewnątrz czarnej dziury zostaje zastąpiona przez wielki region fluktuacji kwantowych, niewielkich zmian energii, gdzie czas i przestrzeń nie mają końca. W regionie tym czas i przestrzeń zmieniają się w nową fazę, zwaną białą dziurą. To obszar, w którym przestrzeń zaczyna funkcjonować przeciwnie do czarnej dziury. W ten sposób białe dziury mogą być miejscem, gdzie czas się rozpoczyna. O ile czarne dziury wszystko pochłaniają, białe dziury mają wyrzucać z siebie materię, a nawet czas, z powrotem do wszechświata.
      O ile, zwykle, czas jest postrzegany zawsze w odniesieniu do obserwatora, w naszych badaniach czas pochodzi od tajemniczej ciemnej energii, która wypełnia wszechświat. Proponujemy, by czas był mierzony przez ciemną energię obecną wszędzie we wszechświecie i odpowiedzialną za jego aktualne rozszerzanie się, dodaje Gielen. W artykule ciemna energia została użyta niemal w roli punktu odniesienia, a czas i energia są uzupełniającymi się bytami.
      To jednak dopiero początek. Hipotetycznie może istnieć obserwator – jakiś hipotetyczny byt – który wejdzie do czarnej dziury, przejdzie przez to, co opisujemy jako osobliwość i pojawi się po drugiej stronie białej dziury. To wysoce abstrakcyjne, ale w teorii może się wydarzyć, stwierdza uczony.
      Jednak odkładając na bok tego hipotetycznego obserwatora, niezwykle istotnym elementem nowych rozważań jest sugestia, że istnieje głęboka łączność pomiędzy naturą czasu w jego najbardziej podstawowej formie, a ciemną energią, która wypełnia kosmos i rządzi jego rozszerzaniem się. Nowe badania sugerują też inne podejście do prób połączenia grawitacji i mechaniki kwantowej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Supermasywna czarna dziura w centrum Drogi Mlecznej jest bardzo aktywna. Naukowcy z Northwestern University wykorzystali Teleskop Webba do uzyskania najdłuższego i najbardziej szczegółowego obrazu Sagittariusa A*. Dowiedzieli się, że w dysku akrecyjnym wokół dziury bez przerwy mają miejsce rozbłyski. Niektóre z nich to bardzo słabe migotania, trwające sekundy. Inne, potężne i oślepiające, można obserwować codziennie. Są jeszcze inne, niezwykle słabe, które trwają miesiącami.
      Nowe odkrycia pozwolą lepiej zrozumieć naturę czarnych dziur i ich interakcje z otoczeniem, a także dynamikę i ewolucję naszej galaktyki. Spodziewamy się, że do rozbłysków dochodzi w pobliżu wszystkich supermasywnych czarnych dziur. Jednak nasza czarna dziura jest unikatowa. Tam się zawsze coś gotuje, zawsze widać jakąś aktywność, wydaje się, że ona nigdy nie jest spokojna. Obserwowaliśmy ją wielokrotnie w 2023 i 2024 roku i przy każdej obserwacji odnotowywaliśmy zmiany. Za każdym razem widzieliśmy coś innego, to naprawdę imponujące. Nic nigdy nie było takie samo, mówi profesor fizyki i astronomii Farhad Yusef-Zadeh, który specjalizuje się w badaniu centrum Drogi Mlecznej.
      Uczony wraz z zespołem wykorzystali urządzeni NIRCam na JWST, które może jednocześnie prowadzić obserwacje w dwóch zakresach podczerwieni. W sumie zebrali 48 godzin obserwacji, które prowadzili co 8–10 godzin w ciągu roku. To pozwoliło im na odnotowywanie zmian w czasie. Sgr A* okazała się bardziej aktywna, niż naukowcy się spodziewali. W dysku akrecyjnym ciągle dochodziło do rozbłysków o różnej jasności i czasie trwania. W ciągu doby miało miejsce 5–6 dużych rozbłysków, pomiędzy którymi naukowcy obserwowali rozbłyski mniejsze. W danych widzimy wciąż zmieniającą się, gotującą jasność. I nagle, bum! Wielki rozbłysk. A później się uspokaja. Nie zauważyliśmy żadnego wzorca. Wydaje się, że to proces przypadkowy. Profil aktywności czarnej dziury był za każdym razem inny i niezwykle ekscytujący, dodaje uczony.
      Naukowcy nie rozumieją procesów zachodzących w dyskach akrecyjnych czarnych dziur. Profesor Yusef-Zadeh podejrzewa dwa różne mechanizmy. Jeśli dysk przypomina rzekę, to krótkotrwałe słabe rozbłyski są jak niewielki przypadkowe fale, a większe długotrwałe rozbłyski jak fale pływowe powodowane przez bardziej znaczące wydarzenia.
      NIRCam pracuje w zakresach 2,1 i 4,8 mikrometrów. Jednym z najbardziej niespodziewanych odkryć było spostrzeżenie, że zjawiska widoczne w krótszym zakresie fal zmieniały jasność na krótko przed wydarzeniami z dłuższego zakresu fal. Po raz pierwszy obserwujemy taką różnicę w czasie podczas obserwacji w tych długościach fali. Obserwowaliśmy je jednocześnie w NIRCam i zauważyliśmy, że dłuższe fale spóźniały się w stosunku do krótszych od niewielką ilość czasu, od kilku sekund do około 40 sekund, dziwi się Yusef-Zadeh.
      To opóźnienie dostarcza dodatkowych informacji. Może ono wskazywać, że cząstki w miarę trwania rozbłysku tracą energię, a utrata ta ma miejsce szybciej w krótszych zakresach fali. Takie zmiany mogą zachodzić, gdy cząstki poruszają się po spirali wokół linii pola magnetycznego.
      Badacze, chcąc to wyjaśnić, mają nadzieję na przeprowadzenie dłuższych obserwacji. Profesor Yusef-Zadeh już złożył prośbę o zgodę na nieprzerwane wykorzystanie NIRCam przez 24 godziny. Dłuższy czas obserwacji pozwoli na usunięcie z nich zakłóceń i poprawienie rozdzielczości. Gdy obserwuje się tak słabe rozbłyski, trzeba zmagać się z zakłóceniami. Jeśli moglibyśmy prowadzić obserwacje nieprzerwanie przez 24 godziny, moglibyśmy zredukować poziom szumu i zobaczyć szczegóły, których obecnie nie widzimy, wyjaśnia uczony.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Węgiel i inne pierwiastki nie dryfują bezwładnie w przestrzeni kosmicznej, zauważyli naukowcy z USA i Kanady. Okazuje się, że w aktywnych galaktykach – takich jak Droga Mleczna – w których wciąż powstają nowe gwiazdy, pierwiastki są transportowane w formie wielkich strumieni. Krążą w galaktyce, wychodzą poza nią i wracają, zanim w wyniku oddziaływania grawitacji i innych sił nie utworzą planet, gwiazd, księżyców czy asteroid. To zaś oznacza, że pierwiastki w naszych organizmach, zanim do nich trafiły, mogły spędzić sporo czasu w przestrzeni międzygalaktycznej, wchodząc w skład ośrodka okołogalaktycznego (CGM).
      Pomyślmy o ośrodku okołogalaktycznym jak o wielkiej stacji kolejowej. Bez przerwy wypycha materiał na zewnątrz i go z powrotem zasysa. Ciężkie pierwiastki, które powstały w gwiazdach, są wypychane z ich galaktyk macierzystych w wyniku eksplozji supernowych i trafiają do przestrzeni międzygalaktycznej, a następnie są z powrotem wciągane do galaktyki, gdzie biorą udział w tworzeniu gwiazd i planet, mówi doktorantka Samantha Garza z University of Washington, jedna z autorek pracy opublikowanej na łamach Astrophysical Journal Letters.
      Naukowcy zauważają, że odkrycie tego procesu ma olbrzymie znaczenie dla naszego zrozumienia procesu ewolucji galaktyk. Jego implikacje dla ewolucji oraz natury dostępnych rezerwuarów węgla są ekscytujące. Ten sam węgiel, który tworzy nasze ciała, prawdopodobnie spędził dużo czasu poza galaktyką, mówi profesor Jessica Werk.
      W 2011 roku po raz pierwszy potwierdzono hipotezę, że aktywne galaktyki są otoczone przez ośrodek okołogalatyczny, olbrzymią chmurę materiału zawierającą gorące gazy. Teraz Garza, Werk i ich współpracownicy odkryli, że w ośrodku tym krążą również pierwiastki powstające w niższych temperaturach, takie jak węgiel. Możemy potwierdzić, że ośrodek okołogalaktyczny działa jak gigantyczny rezerwuar zarówno węgla jak i tlenu. I, przynajmniej w odniesieniu do galaktyk tworzących gwiazdy, uważamy, że materiał ten wraca do galaktyki w procesie recyklingu, stwierdza Garza.
      Jedna z postawionych przez naukowców hipotez mówi, że to spowolnienie lub zaprzestanie tego recyklingu pomiędzy galaktyką a ośrodkiem okołogalaktycznym jest odpowiedzialne za przerwanie procesu tworzenia się nowych gwiazd.
      Badacze wykorzystali instrument Cosmic Origin Spectrograph, który znajduje się na Teleskopie Hubble'a, do obserwacji, w jaki sposób ośrodek okołogalaktyczny 11 galaktyk tworzących gwiazdy wpływa na światło z 9 odległych kwazarów. W ten sposób odkryli, że część tego światła je pochłaniana przez węgiel znajdujący się w medium. I że tego węgla jest dużo. Okazało się również, że węgiel ten można wykryć w odległości nawet 400 tysięcy lat świetlnych od macierzystej galaktyki.
      Teraz celem naukowców jest opisanie innych pierwiastków wchodzących w skład ośrodka okołogalaktycznego, określenie różnic pomiędzy składem ośrodka wokół poszczególnych galaktyk i porównanie tego składu pomiędzy galaktykami, w których wciąż powstają gwiazdy, a tymi, w którym proces formowania gwiazd w dużej mierze się zatrzymał.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W Kwintecie Stephana, na galaktycznym skrzyżowaniu, w którym dawne kolizje galaktyk pozostawiły po sobie liczne szczątki, dochodzi właśnie do kolejnego zderzenia. Bierze w nim udział galaktyka pędząca z prędkością 3,2 milionów km/h. Kolizję, w bezprecedensowej rozdzielczości, zaobserwował międzynarodowy zespół naukowy korzystający z William Herschel Telescope Enhaced Area Velocity Explorer (WEAVE). To supernowoczesny spektrograf, zamontowany przed dwoma laty na William Herschel Telescope na Wyspach Kanaryjskich.
      Zderzenie zostało spowodowane przez galaktykę NGC 7318b, która przedziera się przez Kwintet. W jego efekcie powstała potężna fala uderzeniowa, podobna do fali, jaka ma miejsce, gdy samolot przekracza barierę dźwięku.
      Kwintet Stephana został odkryty około 150 lat temu. To grupa powiązanych ze sobą grawitacyjnie pięciu galaktyk. Cztery z nich znajdują się w odległości około 290 milionów lat świetlnych od nas, piąta położona jest w odległości 40 milionów lś. Kwintet jest idealnym naturalnym laboratorium służącym do badań interakcji pomiędzy galaktykami. Nic więc dziwnego, że stał się pierwszym celem obserwacyjnym WEAVE.
      Doktor Marina Arnaudova z University of Hertfordshire, która stoi na czele grupy badawczej, mówi, że Kwintet nie tylko doświadcza kolejnego w swej historii potężnego zderzenia, ale dzięki niemu astronomowie odkryli podwójną naturę fali uderzeniowej. W miarę, jak wędruje ona przez zimy gaz, ma prędkość hipersoniczną, w medium międzygalaktycznym Kwintetu porusza się z prędkością kilkunastokrotnie większą od prędkości dźwięku. Fala jest tak potężna, że wyrywa elektrony z atomów, pozostawiając za sobą świecący gaz, który obserwujemy za pomocą WEAVE. Jednak gdy fala przechodzi przez otaczający Kwintet gorący gaz, staje się znacznie słabsza. Zamiast dokonywać w nim zniszczeń, fala kompresuje gaz, co prowadzi do pojawienia się emisji w zakresie fal radiowych, którą rejestrują radioteleskopy, takie jak Low Frequency Array (LOFAR), doaje doktorant Soumyadeep Das.
      Nowe, niezwykle szczegółowe informacje, zebrano dzięki połączeniu danych z WEAVE, LOFAR, Very Large Array i Teleskopu Jamesa Webba. Eksperci są przede wszystkim zachwyceni możliwościami WEAVE. Maja nadzieję, że nowy instrument zrewolucjonizuje naszą wiedzę o wszechświecie. Już ta pierwsza praca naukowa powstała za jego pomocą pokazała, jak wielki potencjał tkwi w spektrografie.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...