Kanadyjczycy pracują nad 'magiczną pigułką' na raka
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Wszystkie organizmy żywe wykorzystują metale w czasie podstawowych funkcji życiowych, od oddychania po transkrypcję DNA. Już najwcześniejsze organizmy jednokomórkowe korzystały z metali, a metale znajdziemy w niemal połowie enzymów. Często są to metale przejściowe. Naukowcy z University of Michigan, California Institute of Technology oraz University of California, Los Angeles, twierdzą, że żelazo było tym metalem przejściowym, który umożliwił powstanie życia.
Wysunęliśmy radykalną hipotezę – żelazo było pierwszym i jedynym metalem przejściowym wykorzystywanym przez organizmy żywe. Naszym zdaniem życie oparło się na tych metalach, z którymi mogło wchodzić w interakcje. Obfitość żelaza w pierwotnych oceanach sprawiła, że inne metale przejściowe były praktycznie niewidoczne dla życia, mówi Jena Johnson z University of Michigan.
Johnson połączyła siły z profesor Joan valentine z UCLA i Tedem Presentem z Caltechu. Profesor Valentine od dawna bada, jakie metale wchodziły w skład enzymów u wczesnych form życia, umożliwiając im przeprowadzanie niezbędnych procesów życiowych. Od innych badaczy wielokrotnie słyszała, że przez połowę historii Ziemi oceany były pełne żelaza. W mojej specjalizacji, biochemii i biochemii nieorganicznej, w medycynie i w procesach życiowych, żelazo jest pierwiastkiem śladowym. Gdy oni mi powiedzieli, że kiedyś nie było pierwiastkiem śladowym, dało mi to do myślenia, mówi uczona.
Naukowcy postanowili więc sprawdzić, jak ta obfitość żelaza w przeszłości mogła wpłynąć na rozwój życia. Ted Present stworzył model, który pozwolił na sprecyzowanie szacunków dotyczących koncentracji różnych metali w ziemskich oceanach w czasach, gdy rozpoczynało się życie. Najbardziej dramatyczną zmianą, jaka zaszła podczas katastrofy tlenowej, nie była zmiana koncentracji innych metali, a gwałtowny spadek koncentracji żelaza rozpuszczonego w wodzie. Nikt dotychczas nie badał dokładnie, jaki miało to wpływ na życie, stwierdza uczona.
Badacze postanowili więc sprawdzić, jak przed katastrofą tlenową biomolekuły mogły korzystać z metali. Okazało się, że żelazo spełniało właściwie każdą niezbędną rolę. Ich zdaniem zdaniem, ewolucja może korzystać na interakcjach pomiędzy jonami metali a związkami organicznymi tylko wówczas, gdy do interakcji takich dochodzi odpowiednio często. Obliczyli maksymalną koncentrację jonów metali w dawnym oceanie i stwierdzili, że ilość jonów innych biologiczne istotnych metali była o całe rzędy wielkości mniejsza nią ilość jonów żelaza. I o ile interakcje z innymi metalami w pewnych okolicznościach mogły zapewniać ewolucyjne korzyści, to - ich zdaniem - prymitywne organizmy mogły korzystać wyłącznie z Fe(II) w celu zapewnienia sobie niezbędnych funkcji spełnianych przez metale przejściowe.
Valentine i Johnson chciały sprawdzić, czy żelazo może spełniać w organizmach żywych te funkcje, które obecnie spełniają inne metale. W tym celu przejrzały literaturę specjalistyczną i stwierdziły, że o ile obecnie życie korzysta z innych metali przejściowych, jak cynk, to nie jest to jedyny metal, który może zostać do tych funkcji wykorzystany. Przykład cynku i żelaza jest naprawdę znaczący, gdyż obecnie cynk jest niezbędny do istnienia życia. Pomysł życia bez cynku był dla mnie trudny do przyjęcia do czasu, aż przekopałyśmy się przez literaturę i zdałyśmy sobie sprawę, że gdy nie ma tlenu, który utleniłby Fe(II) do Fe(III) żelazo często lepiej spełnia swoją rolę w enzymach niż cynk, mówi Valentine. Dopiero po katastrofie tlenowej, gdy żelazo zostało utlenione i nie było tak łatwo biologicznie dostępne, życie musiało znaleźć inne metale, które wykorzystało w enzymach.
Zdaniem badaczy, życie w sytuacji powszechnej dostępności żelaza korzystało wyłącznie z niego, nie pojawiła się potrzeba ewolucji w kierunku korzystania w innych metali. Dopiero katastrofa tlenowa, która dramatycznie ograniczyła ilość dostępnego żelaza, wymusiła ewolucję. Organizmy żywe, by przetrwać, musiały zacząć korzystać z innych metali. Dzięki temu pojawiły się nowe funkcje, które doprowadziły do znanej nam dzisiaj różnorodności organizmów żywych.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na Uniwersytecie Stanforda powstała rewolucyjna technika obrazowania struktur wewnątrz organizmu. Polega ona na uczynieniu skóry i innych tkanek... przezroczystymi. Można tego dokonać nakładając na skórę jeden z barwników spożywczych. Testy na zwierzętach wykazały, że proces jest odwracalny. Technika taka taka, jeśli sprawdzi się na ludziach, może mieć bardzo szerokie zastosowanie – od lokalizowania ran, poprzez monitorowanie chorób układu trawienia, po diagnostykę nowotworową.
Technologia ta może uczynić żyły lepiej widocznymi podczas pobierania krwi, ułatwić laserowe usuwanie tatuaży i pomagać we wczesnym wykrywaniu i leczeniu nowotworów, mówi Guosong Hong. Na przykład niektóre terapie wykorzystują lasery do usuwania komórek nowotworowych i przednowotworowych, ale ich działanie ograniczone jest do obszaru znajdującego się blisko powierzchni skóry. Ta technika może poprawić penetrację światła laserowego, dodaje.
Przyczyną, dla której nie możemy zajrzeć do wnętrza organizmu, jest rozpraszanie światła. Tłuszcze, płyny, białka, z których zbudowane są organizmy żywe, rozpraszają światło w różny sposób, powodując, że nie jest ono w stanie penetrować ich wnętrza, więc są dla nas nieprzezroczyste. Naukowcy ze Stanforda stwierdzili, że jeśli chcemy, by materiał biologiczny stał się przezroczysty, musimy spowodować, żeby wszystkie budujące go elementy rozpraszały światło w ten sam sposób. Innymi słowy, by miały taki sam współczynnik załamania. A opierając się na wiedzy z optyki stwierdzili, że barwniki najlepiej absorbują światło i mogą być najlepszym ośrodkiem, który spowoduje ujednolicenie współczynników załamania.
Szczególną uwagę zwrócili na tartrazynę czyli żółcień spożywczą 5, oznaczoną symbolem E102. Okazało się, że mieli rację. Po rozpuszczeniu w wodzie i zaabsorbowaniu przez tkanki, tartrazyna zapobiegała rozpraszaniu światła. Najpierw barwnik przetestowano na cienkich plastrach kurzej piersi. W miarę, jak stężenie tartrazyny rosło, zwiększał się współczynnik załamania światła w płynie znajdującym się w mięśniach. W końcu zwiększył się do tego stopnia, że był taki, jak w białkach budujących mięśnie. Plaster stał się przezroczysty.
Później zaczęto eksperymenty na myszach. Najpierw wtarli roztwór tartrazyny w skórę głowy, co pozwoliło im na obserwowanie naczyń krwionośnych. Później nałożyli go na brzuch, dzięki czemu mogli obserwować kurczenie się jelit i ruchy wywoływane oddychaniem oraz biciem serca. Technika pozwalała na obserwacje struktur wielkości mikrometrów, a nawet polepszyła obserwacje mikroskopowe. Po zmyciu tartrazyny ze skóry tkanki szybko wróciły do standardowego wyglądu. Nie zaobserwowano żadnych długoterminowych skutków nałożenia tartrazyny, a jej nadmiar został wydalony z organizmu w ciągu 48 godzin. Naukowcy podejrzewają, że wstrzyknięcie barwnika do tkanki pozwoli na obserwowanie jeszcze głębiej położonych struktur organizmu.
Badania, w ramach których dokonano tego potencjalnie przełomowego odkrycia, rozpoczęły się jako projekt, którego celem jest sprawdzenie, jak promieniowanie mikrofalowe wpływa na tkanki. Naukowcy przeanalizowali prace z dziedziny optyki z lat 70. i 80. ubiegłego wieku i znaleźli w nich dwa podstawowe narzędzia, które uznali za przydatne w swoich badaniach: matematyczne relacje Kramersa-Kroniga oraz model Lorentza. Te matematyczne narzędzia rozwijane są od dziesięcioleci, jednak nie używano ich w medycynie w taki sposób, jak podczas opisywanych badań.
Jeden z członków grupy badawczej zdał sobie sprawę, że te same zmiany, które czynią badane materiały przezroczystymi dla mikrofal, można zastosować dla światła widzialnego, co mogłyby być użyteczne w medycynie. Uczeni zamówili więc sięc silne barwniki i zaczęli dokładnie je analizować, szukając tego o idealnych właściwościach optycznych.
Nowatorskie podejście do problemu pozwoliło na dokonanie potencjalnie przełomowego odkrycia. O relacjach Kramersa-Kroniga uczy się każdy student optyki, w tym przypadku naukowcy wykorzystali tę wiedzę, do zbadania, jak silne barwniki mogą uczynić skórę przezroczystą. Podążyli więc w zupełnie nowym kierunku i wykorzystali znane od dziesięcioleci podstawy do stworzenia nowatorskiej technologii.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Okresowe głodówki niosą ze sobą wiele korzyści zdrowotnych. Opóźniają wystąpienie niektórych chorób związanych z wiekiem, przedłużają życie. W grę wchodzi tutaj wiele różnych mechanizmów. Jedne z badań prowadzonych MIT wykazały, że głodówka zwiększa możliwości regeneracyjne komórek macierzystych układu pokarmowego, które dzięki temu są w stanie likwidować stany zapalne czy uszkodzenia jelit. Autorzy najnowszych badań dokładnie opisali ten mechanizm, ale odkryli też jego ciemną stronę. Jeśli w takim okresie regeneracji dojdzie do mutacji onkogennych, u badanych myszy z większym prawdopodobieństwem rozwijały się guzy.
Większa aktywność komórek macierzystych jest korzystna z punktu widzenia powrotu do zdrowia, ale zbyt dużo dobrego może z czasem mieć niekorzystne skutki, mówi główny autor badań, profesor Omer Yilmaz ze znajdującego się na MIT Koch Institute for Integrative Cancer Research. Uczony dodaje, że potrzebne są kolejne badania, by sprawdzić, czy takie samo zjawisko występuje również u ludzi.
Yilmaz i jego zespół od wielu lat badają wpływ głodówek i diet niskokalorycznych na zdrowie układu pokarmowego. W 2018 roku wykazali, że podczas głodówki komórki macierzyste jelit zaczynają wykorzystywać lipidy, a nie węglowodany, jako źródła energii. Dowiedli też, że głodówka prowadzi do znacznego zwiększenia zdolności regeneracyjnych komórek macierzystych. Od tamtego czasu próbowaliśmy zrozumieć mechanizm, za pomocą którego głodówka zwiększa te zdolności. Czy chodzi o samą głodówkę czy o jedzenie po zakończeniu głodówki, wyjaśnia uczony.
Nowe badania pokazały, że w czasie głodówki zdolności regeneracyjne komórek macierzystych są ograniczone, ale gwałtownie wzrastają w okresie po zakończeniu głodówki. Uczeni prowadzili eksperymenty na trzech grupach myszy. Pierwsza z nich głodowała przez 24 godziny, druga głodowała przez 24 godziny, a następnie mogła jeść kiedy chce, oraz trzecia, która mogła jeść kiedy chce. W czasie trwania eksperymentu prowadzono analizę zdolności do namnażania się komórek macierzystych jelit. Okazało się, że taki proces zachodził najbardziej intensywnie po zakończeniu głodówki.
Głodówka i ponowne spożywanie pokarmów to dwa różne stany. Podczas głodówki komórki mogą przetrwać dzięki wykorzystywaniu lipidów. A regenerację napędza okres ponownego przyjmowania pokarmów po głodówce. Wówczas komórki macierzyste i komórki prekursorowe uruchamiają programy, które pozwalają im namnażanie się i ponowne zasiedlanie wyściółki jelit, wyjaśnia doktor Shinya Imada. Badacze dowiedzieli się, że komórki aktywują wówczas szlak sygnałowy mTOR, który zaangażowany jest w procesy wzrostu i metabolizmu komórek. Jedną z ról mTOR jest translacja mRNA w białka, więc po aktywacji, komórka produkuje więcej białka, a jego synteza jest niezbędna do rozprzestrzeniania się. Uczeni wykazali też, że aktywacja mTOR w komórkach macierzystych prowadzi też do bardzo dużej produkcji poliamin, niewielkich molekuł pomagających komórkom we wzroście i podziale.
Okazało się jednak, że gdy komórki macierzyste znajdują się stanie, w którym zdolne są do tak intensywnej regeneracji, są bardziej podatne na mutacje onkogenne. Komórki macierzyste jelit należą do najbardziej aktywnie dzielących się komórek w naszych organizmach. Dzięki nim szybko dochodzi do wymiany wyściółki jelit. Jednak, jako że dzielą się tak często, są głównym źródłem komórek przedrakowych. Autorzy badań zauważyli, że gdy u myszy, które zaczęły jeść po głodówce, uruchomią gen powodujący nowotwór, zwierzęta takie z większym prawdopodobieństwem rozwiną przedrakowe polityp niż w sytuacji, gdy gen zostanie uruchomiony w czasie głodówki czy u zwierząt, które nie głodowały.
Chcę podkreślić, że to badania na myszach, w których użyliśmy konkretnej mutacji. U ludzi będzie to bardziej skomplikowane. Z badań możemy jednak wyciągnąć następujący wniosek: głodówka jest bardzo zdrowa, jeśli jednak masz pecha i w momencie, gdy kończysz głodówkę komórki twoich jelit zostaną wystawione na działanie mutagenu – na przykład na przypalony stek – może dojść do zwiększenia ryzyka pojawienia się nieprawidłowości, która da początek nowotworowi, wyjaśnia Yilmaz.
Uczony stwierdził też, że głodówka może przynieść bardzo dużo korzyści osobom, które przechodzą uszkadzającą jelita radioterapię. Obecnie wraz z zespołem bada, czy podobnych korzyści nie można odnieść bez głodówki, przyjmując suplementy poliamin.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Badania przeprowadzone przez American Cancer Society wskazują, że wśród kolejnych coraz młodszych pokoleń rośnie liczba zachorowań na 17 z 34 rodzajów nowotworów. Młodzi ludzie częściej niż ich rodzice i dziadkowie, gdy byli w ich wieku, chorują m.in. na nowotwory piersi, trzustki czy układu pokarmowego. Zauważono też wzrost związany z nowotworami wątroby (tylko u kobiet), macicy, jąder, pęcherzyka żółciowego i jelita grubego.
Nasze badania dostarczają kolejnych już dowodów na zwiększanie ryzyka rozwoju nowotworów w pokoleniach następujących po pokoleniu baby boomers [osoby urodzone w latach 1946–1964]. Potwierdzają spostrzeżenia dotyczące zwiększenia liczby wczesnych przypadków raka jelita grubego i nowotworów związanych z otyłością oraz rozszerzają liczbę nowotworów, które dotykają ludzi w coraz młodszym wieku, mówi główna autorka badań doktor Hyuna Sung.
Naukowcy wzięli pod uwagę takie czynniki jak rok urodzenia, status społeczny, ekonomiczny i polityczny oraz środowisko, w którym żyli badani, co wpływa na ewentualną ekspozycję na czynniki ryzyka. Zauważyliśmy, że trendy dotyczące zapadalności na nowotwory związane są z rokiem urodzenia, jednak wciąż nie mamy jasnego wytłumaczenia, dlaczego choruje coraz więcej ludzi, mówi uczona.
Naukowcy przeanalizowali dane dotyczące 23 654 000 osób, u których zdiagnozowano jeden z 34 rodzajów nowotworów oraz informacje o 7 348 137 osobach, które zmarły na jeden z 25 rodzajów nowotworów pomiędzy początkiem roku 2000 a końcem roku 2019. Zmarli byli w wieku od 25 do 84 lat. Na potrzeby porównania liczby przypadków zachorowań ze względu na wiek, badana grupa została podzielona w zależności od roku urodzenia na podgrupy obejmujące 5 lat. W podziale uwzględniono lata 1920–1990.
Badacze zauważyli, że od 1920 roku rośnie liczba przypadków zachorowań na 8 z 34 nowotworów. Na przykład osoby urodzone około 1990 roku są narażone, w porównaniu z osobami urodzonymi w roku 1955, na 2-3-krotnie większe ryzyko zachorowania na nowotwory trzustki, nerek i gruczolakoraki jelita cienkiego, a kobiety dodatkowo narażone są na większe ryzyko nowotworu wątroby.
W młodszych pokoleniach wzrósł odsetek zachorowań na 9 rodzajów nowotworów, których odsetek w starszych pokoleniach spadał. Są to estrogenozależne nowotwory piersi, nowotwór macicy, jelita grubego, woreczka żółciowego, nowotwory żołądka (z wyjątkiem raka wpustu żołądka), nowotwór jajników, jąder oraz – u mężczyzn – mięsak Kaposiego i rak odbytu. U osób urodzonych około 1990 roku ryzyko rozwoju nowotworu jajników jest o 12%, a nowotworu macicy o 169% wyższe niż grupie o najniższej zachorowalności.
Wzrost odsetka zapadalności na nowotwory w młodszych grupach oznacza zmianę pokoleniową ryzyka zachorowania i jest wczesną wskazówką dotyczącą przyszłych przypadków nowotworów w skali kraju. Bez odpowiedniej polityki zdrowotnej i w związku z ogólnym wzrostem ryzyka związanym z wiekiem, może dojść do zatrzymania lub nawet odwrócenia trwających od dekad trendów spadku zachorowalności. Badania te pokazują, jak ważne jest zidentyfikowanie przyczyn i czynników ryzyka powodujących większą zapadalność na nowotwory wśród przedstawicieli pokolenia X [urodzeni w latach 1965–1980] i milenialsów [1981–1996], dodaje doktor Ahmedin Jemal.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Dermatolog Harald Kittler z Uniwersytetu Medycznego w Wiedniu stanął na czele austriacko-australijskiego zespołu, który porównał trafność diagnozy i zaleceń dotyczących postępowania z przebarwieniami na skórze stawianych przez lekarzy oraz przez dwa algorytmy sztucznej inteligencji pracujące na smartfonach. Okazało się, że algorytmy równie skutecznie co lekarze diagnozują przebarwienia. Natomiast lekarze podejmują znacznie lepsze decyzje dotyczące leczenia.
Testy przeprowadzono na prawdziwych przypadkach pacjentów, którzy zgłosili się na Wydział Dermatologii Uniwersytetu Medycznego w Wiedniu oraz do Centrum Diagnozy Czerniaka w Sydney w Australii.
Testowane były dwa scenariusze. W scenariuszu A porównywano 172 podejrzane przebarwienia na skórze (z których 84 były nowotworami), jakie wystąpiły u 124 pacjentów. W drugim (scenariuszu B) porównano 5696 przebarwień – niekoniecznie podejrzanych – u 66 pacjentów. Wśród nich było 18 przebarwień spowodowanych rozwojem nowotworu. Testowano skuteczność dwóch algorytmów. Jeden z nich był nowym zaawansowanym programem, drugi zaś to starszy algorytm ISIC (International Skin Imaging Collaboration), używany od pewnego czasu do badań retrospektywnych.
W scenariuszu A nowy algorytm stawiał diagnozę równie dobrze jak eksperci i był wyraźnie lepszy od mniej doświadczonych lekarzy. Z kolei algorytm ISIC był znacząco gorszy od ekspertów, ale lepszy od niedoświadczonych lekarzy.
Jeśli zaś chodzi o zalecenia odnośnie leczenia, nowoczesny algorytm sprawował się gorzej niż eksperci, ale lepiej niż niedoświadczeni lekarze. Aplikacja ma tendencję do usuwania łagodnych zmian skórnych z zaleceń leczenia, mówi Kittler.
Algorytmy sztucznej inteligencji są więc już na tyle rozwinięte, że mogą służyć pomocą w diagnozowaniu nowotworów skóry, a szczególnie cenne będą tam, gdzie brak jest dostępu do doświadczonych lekarzy. Ze szczegółami badań można zapoznać się na łamach The Lancet.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.