Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Przepływ plazmy w pobliżu powierzchni wyjaśnia plamy słoneczne i inne zjawiska

Recommended Posts

Ludzkość od kilkuset lat śledzi plamy na Słońcu i wie, że ich liczba zmienia się w 11-letnich cyklach. Dotychczas jednak brak dobrego wyjaśnienia tego fenomenu. Naukowcy z University of Washington opublikowali na łamach Physics of Plasmas artykuł, w którym proponują model ruchu plazmy, który ma wyjaśniać zarówno 11-letni cykl słoneczny ja i inne tajemnice naszej gwiazdy.

Nasz model znacząco różni się od standardowego obrazu Słońca. Sądzę, że jesteśmy pierwszymi którzy są w stanie wyjaśnić naturę oraz źródło słonecznych zjawisk magnetycznych, czyli jak działa Słońce, mówi profesor Thomas Jarboe, główny autor artykułu.

Model opiera się na doświadczeniach nabytych w czasie prac nad energią fuzyjną. Wynika z niego, że kluczem do zrozumienia Słońca jest cienka warstwa znajdująca się pod jego powierzchnią. To ona decyduje o plamach, przebiegunowaniu magnetycznym czy przepływie materii. Model ten porównano z danymi obserwacyjnymi i okazało się, że dobrze je on przewiduje. Dane obserwacyjne są kluczem do potwierdzenia słuszności naszego modelu funkcjonowania Słońca, mówi Jarboe.

W tym nowym modelu mamy do czynienia z cienką warstwo przepływu plazmy i pola magnetycznego, innymi słowy z cienką warstwą swobodnie poruszających się elektronów, które z różną prędkością przemieszczają się w różnych częściach gwiazdy. Różnice w tempie przepływu wywołują zmiany pola magnetycznego, podobne do tych, które pojawiają się w niektórych eksperymentalnych reaktorach fuzyjnych.

Co 11 lat wa warstwa staje się na tyle duża, że traci stabilność i Słońce się jej pozbywa, mówi Jarboe. Podczas tego procesu odsłonięta zostaje niżej położona warstwa plazmy, która porusza się w przeciwnym kierunku i ma odwrócone pole magnetyczne. Gdy obie półkule Słońca poruszają się z tą samą prędkością, pojawia się więcej plam. Gdy prędkości są różne, plam jest mniej. To właśnie różnica w prędkościach wywołała Minimum Maundera, stwierdza uczony.

Gdy dwie półkule obracają się z różną prędkością, wówczas w pobliżu równika zaczątki plam nie pasują do siebie i nie dochodzi do ich powstawania, mówi Jarboe. Dotychczas naukowcy sądzili, że plamy słoneczne powstają na głębokości 30% średnicy Słońca, przypomina uczony. Tymczasem z nowego modelu wynika, że są one „superziarnami” powstającymi na głębokości 150–450 kilometrów. Plama słoneczna to coś zadziwiającego.Pojawia się nagle i znikąd.

Podczas swoich badań nad reaktorami Jarboe i jego koledzy skupiali się na sferomaku, typie reaktora, który generuje plazmę w kuli. Tam plazma samodzielnie się organizuje w różnorodne wzorce. Gdy naukowcy porównali zachodzące w niej zjawiska z tym, co wiadomo o Słońcu, zauważyli podobieństwa.

Jarboe twierdzi, że nowy model wyjaśnia przepływ materii wewnątrz Słońca, zmiany pola magnetycznego prowadzące do powstawania plam oraz całą strukturę magnetyczną naszej gwiazdy. Mam nadzieję, że naukowcy spojrzą na swoje dane z nowej perspektywy, a ci, którzy całe życie poświęcili zbieraniu danych otrzymają do ręki nowe narzędzie, pozwalające lepiej to wszystko zrozumieć, mówi uczony.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Świetny węch może być nie jedyną niezwykłą cechów psów. Najnowsze badania wskazują, że zwierzęta te mogą też wykorzystywać ziemskie pole magnetyczne do wyszukiwania skrótów w nieznanym sobie terenie. To pierwsza tego typu sugestia dotycząca psów, zauważa Catherine Lohmann, biolog z University of North Carolina, która specjalizuje się w badaniu magnetorecepcji i systemu nawigacyjnego żółwi.
      Uczona przypomina, że psy – w porównaniu np. z gatunkami migrującymi – rzadko są badane pod kątem ich zdolności do nawigowania w terenie. To daje nam wgląd w to, w jaki sposób psy tworzą obraz otaczającej ich przestrzeni, stwierdza Richard Holland z Bangor University, badający nawigację ptaków.
      Już wcześniej pojawiały się pewne sugestie, że psy mogą wyczuwać pole magnetyczne naszej planety. W 2013 roku Hynek Burda z praskiego Uniwersytetu Nauk Przyrodniczych, który od 30 lat bada zjawisko magnetorecepcji, informował, że psy podczas wydalania zwykle ustawiają sie w linii północ-południe. Burda spekulował, że skoro odchody służą psom do znakowania i rozpoznawania terytorium, to takie ustawienie pozwala im określić lokalizację względem innych punktów w przestrzeni. Jednak statyczne określenie się w przestrzeni jest czymś zupełnie innymi niż nawigacja.
      Autorką najnowszych badań jest doktorantka Burdy, Kateřina Benediktová. Młoda uczona przyczepiła czterem psom nadajniki GPS oraz kamera i zabierała je na spacery po lesie. Do eksperymentów wybrała psy, które lubiły tropić dziką zwierzynę. Gdy pies wyczuł zwierzę śledził je po śladach średnio przez 400 metrów. Benediktovą interesowały zaś strategie, jakie psy wybierały podczas powrotu do niej. Zauważyła, że zwierzęta korzystają z dwóch strategii. Pierwsza z nich to powrót tą samą droga. Niewykluczone, że pies podążał z powrotem po tym samym śladzie zapachowym, po którym tropił zwierzynę. Druga ze strategii, nazwana przez uczoną „zwiadem”, polegała na tym, że pies wracał całkowicie nową drogą, w ogóle nie idąc po wcześniejszym śladzie.
      Gdy Benediktova pokazała Burdzie swoje dane, ten zauważył coś interesującego. Okazało się, że mniej więcej w połowie trasy „zwiadu” psy zatrzymywały się i przez około 20 metrów biegły wzdłuż linii północ-południe. Następnie kontynuowały „zwiad”. Zachowanie to wyglądało tak, jakby psy ustalały swoje położenie względem linii pola magnetycznego. Jednak Benediktová miała zbyt mało danych, by to potwierdzić.
      Młoda uczona i jej promotor postanowili więc przeprowadzić większy eksperyment. Wykorzystali w nim 27 psów, z którymi na przestrzeni 3 lat odbyli setki wycieczek po lesie. Szczegółowo przeanalizowali 223 „zwiady” powrotne. W czasie każdego z nich pies średnio przebywał drogę 1,1 kilometra. W 170 przypadkach psy zatrzymywały się, obracały i przebiegały około 20 metrów wzdłuż linii północ-południe. Okazało się, że te psy, które wykonały taki manewr, zwykle wracały do właściciela krótszą drogą, niż te, które go nie wykonywały.
      Naukowcy starali się, by psy nie miały żadnych wskazówek odnośnie tego, gdzie się znajdują. Dlatego też starano się je zabierać do tych części lasu, w których jeszcze nie były. Ponadto, gdy tylko pies był spuszczany ze smyczy i zaczynał iść tropem zwierzyny, jego właściciel się chował, by powracające zwierzę go nie widziało. Zwierzęta nie mogły też orientować się na zapach, gdyż rzadko w czasie badań zdarzało się tak, by wiatr wiał od właściciela w stronę powracającego psa.
      Burda mówi, że najbardziej prawdopodobnym wyjaśnieniem zachowań psów jest to mówiące, że zwierzęta wykorzystują ziemskie pole magnetyczne, by zorientować się, gdzie są. Lohmann, która jest pod wrażeniem badań czeskich kolegów zauważa, że takie wyjaśnienie zakłada jednocześnie, iż zwierzęta pamiętają swoją poprzednią pozycję względem pola magnetycznego i później wykorzystują te dane, by znaleźć najkrótszą drogę do domu. Jestem zaintrygowana, przyznaje uczona.
      Adam Miklósi, specjalista od psiego zachowania z Eötvös Loránd University, mówi, że zaprojektowanie odpowiednich eksperymentów, by udowodnić psią magnetorecepcję, będzie niezwykle trudne. Trudno jest bowiem spowodować, by zwierzę mogło opierać się wyłącznie na tego typu danych. Problem w tym, że aby na 100% udowodnić istnienie magnetorecepcji czy jakiegokolwiek innego zmysłu, trzeba by wykluczyć wszystkie pozostałe zmysły, mówi.
      Burda i Benediktová już mają pomysł na kolejny interesujący eksperyment. Chcą przyczepić psom do obróż magnesy, które zakłócą lokalne pole magnetyczne. Uczeni mają zamiar sprawdzić, czy zaburzy to psom zdolność do nawigowania.
      Miklósi stwierdza, że ewentualne potwierdzenie magnetorecepcji u psów nie będzie zaskoczeniem. Wydaje się bowiem, że jest to zdolność, która pojawiła się na wczesnych etapach ewolucji i powinien posiadać ją każdy ssak, który odbywa dalekie podróże.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Słońce wydaje się znacznie mniej aktywne niż inne podobne mu gwiazdy. Do takich zaskakujących wniosków doszedł międzynarodowy zespół astronomów, który przeanalizował dane z Teleskopu Kosmicznego Keplera. Odkrycie, dokonane przez grupę kierowaną przez Timo Reinholda z Instytutu Badań Układu Słonecznego im. Maxa Plancka, pozwoli na lepsze zrozumienie ewolucji naszej gwiazdy.
      Ludzkość od wieków obserwuje Słońce i od dawna wiemy, że znaczących zmianach liczby plam na nim występujących. Wiemy też, że im więcej plam, tym większa aktywność gwiazdy i tym silniejsze gwałtowne wydarzenia, jak wyrzuty masy. Specjaliści spodziewali się, że inne gwiazdy podobne do Słońca zachowują się w podobny sposób na tym samym etapie życia.
      Nie jesteśmy w stanie obserwować plam na innych gwiazdach, jednak przemieszczanie się plam na powierzchni gwiazd powoduje zmiany ich jasności. Dzięki temu możemy obserwować aktywność magnetyczną odległych gwiazd. Zespół Reinholda postanowił wykorzystać te dane do porównania aktywności Słońca z innymi podobnymi mu gwiazdami.
      Teleskop Kosmiczny Keplera badał i rejestrował zmiany w jasności 150 000 gwiazd. W tym samym czasie sonda Gaia obserwowała gwiazdy i określała ich pozycję oraz ruch we wszechświecie. Teraz uczeni przeanalizowali te dane i na ich podstawie zidentyfikowali 369 gwiazd o temperaturze, masie, wieku, składzie chemicznymi i prędkości obrotowej podobnych do Słońca. Okazało się, że – wbrew oczekiwaniom – większość tych gwiazd jest znacznie bardziej aktywnych od Słońca. Średnia wartość zmian ich jasności była aż 5-krotnie większa niż zmiany jasności naszej gwiazdy.
      Naukowcy proponują dwa możliwe wyjaśnienia tak wielkiej różnicy. Jedno z nich zakłada, że zmiany jasności niektórych gwiazd podobnych do Słońca są tak niewielkie, iż Kepler ich nie zauważył, co sztucznie zwiększyło średnią dla całej grupy. Drugie wyjaśnienie brzmi, że mamy tu do czynienia z prawdziwymi średnimi zmianami jasności, a to sugeruje, że w przeszłości Słońce również przechodziło okres tak dużej aktywności. To drugie przypuszczenie jest zgodne z wcześniejszymi badaniami, które wskazywały, że gwiazdy z ciągu głównego, gdy zbliżają się do połowy okresu swojego istnienia, znacznie zmniejszają swoją aktywność utrzymując wcześniejszą prędkość obrotową.
      Zespół Reinholda ma zamiar wyjaśnić te kwestie, wykorzystując w tym celu przyszłe pomiary, jakie będą dokonywane przez instrumenty TESS i PLATO.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astronomowie odkryli najpotężniejszą eksplozję we wszechświecie od czasu Wielkiego Wybuchu. Eksplozja pochodziła z supermasywnej czarnej dziury znajdującej się w galaktyce położonej setki milionów lat świetlnych od Ziemi. W czasie wybuchu uwolniło się 5-krotnie więcej energii niż z wcześniejszej najpotężniejszej znanej nam eksplozji.
      Obserwowaliśmy już takie wydarzenia w centrach galaktyk, ale to jest naprawdę olbrzymie. I nie wiemy, dlaczego jest tak potężne. Wybuch przebiegał bardzo powoli. Jak eksplozja w zwolnionym tempie rozciągająca się setki milionów lat, mówi profesor Melanie Johnston-Hollitt.
      Do potężnego wybuchu doszło w Supergromadzie w Wężowniku. Był on tak silny, że wypalił dziurę w supergorącej plazmie otaczającej czarną dziurę.
      Początkowo, gdy teleskopy działające w zakresie promieniowania rentgenowskiego zauważyły dziurę w plazmie, odrzucono hipotezę, że mogła ona powstać w wyniku eksplozji, gdyż nie wyobrażano sobie, że może dojść do tak silnego wybuchu.
      Sceptycyzm był spowodowany siłą wybuchu konieczną do wywołania takiego efektu. Ale okazało się, że naprawdę do niego doszło. Wszechświat to dziwne miejsce, mówi Johnston-Hollit. Dopiero, gdy do obserwacji zaprzęgnięto radioteleskopy, naukowcy w pełni zdali sobie sprawę z tego, co odkryli. Dane z radioteleskopów pasowały do danych z teleskopów rentgenowskich jak rękawiczka do ręki, dodaje współautor badań doktor Maxim Markevitch z Goddard Space Flight Center.
      Profesor Johnston-Hollitt porównuje swoją pracę do archeologii. Mamy teraz narzędzia, radioteleskopy pracujące na niskich częstotliwościach, które pozwolą nam kopać głębiej w przeszłości. Powinniśmy być w stanie wykryć więcej tego typu eksplozji, mówi.
      Uczona przypomina, że odkrycia dokonano za pomocą czterech różnych teleskopów, w tym Murchison Widefield Array (MWA), którego budowa jeszcze nie została dokończona. Obecnie MWA składa się z 2048 anten. Wkrótce będziemy mogli wykorzystać 4069 anten, dzięki czemu teleskop będzie 10-krotnie bardziej czuły niż obecnie. MWA to jedna z czterech części Square Kilometre Array (SKA).

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Mars jest aktywny sejsmicznie, często powstają na nim wiry pyłowe, a w jego wnętrzu pojawiają  tajemnicze pulsujące sygnały magnetyczne. Takie wnioski płyną z danych gromadzonych od ubiegłego roku przez misję InSight. Na łamach Nature właśnie opublikowano pięć pierwszych artykułów naukowych opartych na badaniach InSight. Szósty zaś ukazał się w Nature Geoscience i szczegółowo opisuje miejsce lądowania InSight.
      InSight to pierwsza w historii misja, której celem jest zbadanie głębokich regionów pod powierzchnią Marsa. Pojazd wyposażono w sejsmometr (Seismic Experiment for Interior Structure - SEIS) wykrywający wstrząsy, czujniki ciśnienia powietrza, magnetometr oraz czujniki przepływu ciepła we wnętrzu planety.
      Okazało się, że wstrząsy mają miejsce na Marsie częściej niż sądzono i są łagodniejsze niż przewidywano. SEIS został umieszczony na powierzchni planety w grudniu 2018 roku, a pracę rozpoczął w lutym 2019. W ciągu minionego roku zarejestrował on ponad 450 sygnałów sejsmicznych, z czego większość to prawdopodobnie wstrząsy. Najsilniejsze trzęsienie miało siłę 4.0 stopni.
      Tak słabe wstrząsy nieco zawiodły naukowców. Nie są one bowiem na tyle potężne, by dotrzeć do niższych obszarów płaszcza i rdzenia planety, a uczeni mieli nadzieję, że zarejestrują pochodzące stamtąd sygnały i będą mogli zbadać te regiony. Uczeni wciąż jednak nie tracą nadziei. Pierwsze sygnały SEIS zarejestrował dopiero po długim oczekiwaniu, od listopada 2019 roku rejestruje średnio 2 sygnały dziennie, co sugeruje, że InSight wylądowała momencie, gdy Mars był wyjątkowo spokojny. Naukowcy trzymają więc kciuki, by sonda zarejestrowała naprawdę potężny wstrząs. Mars nie posiada płyt tektonicznych, a wstrząsy powstają w aktywnych wulkanicznie regionach planety.
      Przed miliardami lat Mars posiadał też pole magnetyczne. Jego pozostałością są namagnetyzowane skały znajdujące się od 61 metrów do wilu kilometrów pod powierzchnią. Dlatego też InSight wyposażono w magnetometr. To pierwszy tego typu instrument, jaki umieszczono na powierzchni Czerwonej Planety. Magnetometr już wykrył, że w miejscu lądowania sondy sygnały są 10-krotnie silniejsze niż wynikało z badań prowadzonych z orbity. Różnica wynika z faktu, że pomiary dokonywane z orbity są uśredniane dla powierzchni setek kilometrów, a InSight dokonuje pomiarów bardziej lokalnych.
      Jako, że większość skał znajdujących się w miejscu lądowania InSight jest zbyt młodych, by mogły być namagnetyzowane przez pole magnetyczne Marsa, naukowcy są przekonani, że zarejestrowane sygnały pochodzą z głębiej położonych skał. Zauważono też, że sygnały ulegają zmianie. Są różne za dnia i w nocy, a około północy zaczynają pulsować. Teoretycy nie wykluczają, że zmiany związane są z interakcją wiatru słonecznego z atmosferą Marsa.
      InSight niemal na bieżąco mierzy też prędkość, ciśnienie i kierunek wiatru. Dotychczas zarejestrowano tysiące wirów pyłowych. Jest ich więcej niż w jakimkolwiek innym miejscu, gdzie dokonywano takich pomiarów. Pomimo tak wielkiej ich liczby jeszcze żaden z nich nie został zarejestrowany przez kamerę InSight. Jednak zarejestrował je instrument SEIS. Wiry pyłowe działają jak wielki odkurzacz i są doskonałym instrumentem do sejsmicznego badania tego, co dzieje się pod powierzchnią. Ich powstawanie ma prawdopodobnie związek z polem magnetycznym planety.
      Już wstępne dane dostarczone przez InSight są bardzo obiecujące. Za rok poznamy informacje z całego marsjańskiego roku, który trwa dwa ziemskie lata. To da naukowcom znacznie lepszy obraz Marsa.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Amerykańska Narodowa Fundacja Nauki (NSF) chwali się najbardziej szczegółowymi zdjęciami Słońca, jakie kiedykolwiek udało się wykonać. Fotografie to dzieło nowego instrumentu badawczego Daniel K. Inouye Solar Telescope, który właśnie rozpoczął pracę. To największy na Ziemi teleskop wyspecjalizowany w badaniu Słońca. Apertura jego lustra wynosi imponujące 424 centymetry. To aż dwuipółkrotnie więcej niż drugiego największego Goode Solar Telescope.
      Inouye Solar Telescope stoi na szczycie Haleakala na Hawajach. Pierwsze wykonane przezeń zdjęcia pokazują powierzchnię naszej gwiazdy w niespotykanej dotychczas rozdzielności. Widzimy na nich, że Słońce pokryte jest „ziarnami” obszarów gotującej się plazmy. Taki wzorzec pokrywa całą jego powierzchnię. Na fotografii widzimy ciasno ułożone „komórki” – każda z nich ma powierzchnię dwukrotnie większą od powierzchni Polski – które są dowodem na intensywny transport ciepła z wnętrza gwiazdy ku jej powierzchni. Gorąca plazma wypływa na powierzchnię, schładza się i ponownie zanurza wgłąb Słońca. Do zanurzania się dochodzi w miejscach widocznych ciemnych linii. Cały ten proces zwany jest konwekcją.
      Od kiedy NSF zaczęła budować ten teleskop, z niecierpliwością czekaliśmy na pierwsze obrazy. Teraz możemy pokazać zdjęcia i materiały wideo. To najbardziej szczegółowe obrazy naszego Słońca w historii. Inouye Solar Telescope stworzy mapę pól magnetycznych korony słonecznej, miejsca, w którym zachodzą procesy mające wpływ na życie na Ziemi. Polepszy on nasze rozumienie pogody kosmicznej i pomoże lepiej przewidywać burze na Słońcu, stwierdził France Cordova, dyrektor NSF.
      W każdej sekundzie Słońce spala około 5 milionów ton paliwa. Minimalna część energii z tego procesu trafia na Ziemię. W latach 50. ubiegłego wieku naukowcy zauważyli, że od naszej gwiazdy wieje wiatr słoneczny. Stwierdzili również, że żyjemy wewnątrz atmosfery Słońca. Jednak o zjawiskach w niej zachodzących wciąż niewiele wiemy.
      Jeśli chodzi o atmosferę ziemską, to jesteśmy w stanie z dużym prawdopodobieństwem przewidzieć, czy i gdzie będzie padało. W odniesieniu do pogody kosmicznej takich umiejętności nie mamy. Nasze możliwości przewidywania pogody kosmicznej są o co najmniej 50 lat opóźnione w stosunku do umiejętności przewidywania pogody na Ziemi. Musimy zrozumieć zjawiska fizyczne stanowiące podstawę pogody kosmicznej, a ta zaczyna się na Słońcu. Teleskop Słoneczny Inouye będzie je badał przez następne dekady, dodaje Matt Mountain, prezydent Association of Universities for Research in Astronomy, które zarządza teleskopem.
      Daniel K. Inouye Solar Telescope to imponujące urządzenie. Już samo kierowanie 4-metrowego lustra w stronę Słońca wiąże się z dostarczeniem doń olbrzymiej ilości ciepła, które trzeba w jakiś sposób usunąć. Teleskop korzysta ze specjalnego systemu chłodzącego, na który składa się ponad 11 kilometrów rur z chłodziwem, od którego część ciepła jest odbierana przez lód, tworzący się na szczycie w ciągu nocy.
      Kopuła nad teleskopem została wykonana z cienkich chłodzących płyt stabilizujących temperaturę wokół teleskopu, a specjalny system osłon pozawala na regulowanie przepływu powietrza i zapewnia cień. Specjalny wysoko zaawansowany zespół chłodzący składający się z metali i chłodziwa otacza główne lustro, blokując większość zbieranej przez nie energii. Teleskop wykorzystuje też zaawansowane układy optyczne kompensujące zakłócenia wywoływane obecnością ziemskiej atmosfery.
      Prace nad teleskopem rozpoczęły się ponad 20 lat temu. Jego budowa ruszyła w styczniu 2013 roku, a we wrześniu gotowy był już budynek teleskopu. W sierpniu 2017 na miejsce dostarczono główne lustro. W 2019 roku urządzenie zostało testowo uruchomione, a w styczniu 2020 rozpoczęło pracę i dostarczyło wyjątkowe zdjęcia.

      « powrót do artykułu
×
×
  • Create New...