Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Badają świadka pierwszego dnia zagłady dinozaurów

Recommended Posts

Gdy asteroida, która przyniosła zagładę dinozaurom, uderzyła w Ziemię, doszło do olbrzymich pożarów, pojawiły się wielkie tsunami, a uderzenie wyrzuciło do atmosfery olbrzymie ilości siarki, która na długo zablokowała dostęp promieni słonecznych, spowodowała ochłodzenie, co ostatecznie zabiło dinozaury.

To scenariusz znany, ale hipotetyczny. Teraz został on potwierdzony przez naukowców University of Texas, którzy zbadali setki metrów skał, jakie w ciągu 24 godzin wypełniły krater uderzeniowy.

Te dowody to m.in.kawałki węgla drzewnego, skały naniesione przez przepływ wsteczny tsunami oraz brak siarki. To zapis wypadków, który odczytujemy bezpośrednio z miejsca uderzenia. Sam świadek opowiada nam o tym wydarzeniu, mówi profesor Sean Gulick z Instytutu Geofizyki University of Texas.

Gulick stał na czele misji 2016 International Ocean Discovery Program, w ramach którego przeprowadzono wiercenia w miejscu, w którym asteroida uderzyła w naszą planetę w pobliżu Jukatanu.

Większość materiału, który wypełnił krater uderzeniowy w ciągu kilku godzin po katastrofie pochodziła albo z miejsca uderzenia, albo też została naniesiona przez wody Zatoki Meksykańskiej, które w wyniku uderzenia gwałtownie się cofnęły, a następnie zalały krater. W ciągu zaledwie doby krater został wypełniony warstwą materiału grubą na około 130 metrów. To jeden z najszybciej przebiegających procesów osadzania w historii geologii. Osady te zaczęły gromadzić się w ciągu minut i godzin po uderzeniu, stanowią więc szczegółowy zapis wydarzenia, które doprowadziło do wyginięcia 75% organizmów żywych na Ziemi. Gulick mówi, że po krótkotrwałym regionalnym piekle nastąpiła długotrwała planetarna zima. Dinozaury najpierw zostały upieczone, a później zamrożone. Nie wszystkie zginęły tego dnia, ale wiele poniosło śmierć, stwierdza uczony.

Zdaniem specjalistów energia uderzenia była 10 miliardów razy większa, niż energia bomb atomowych zrzuconych na Japonię. Była tak olbrzymia, że tysiące kilometrów dalej zapaliły się rośliny, a potężne tsunami dotarło na tereny dzisiejszego stanu Illinois. Teraz wewnątrz krateru znaleziono węgiel drzewny oraz chemiczny biomarker grzybów, co wskazuje, że powracające po tsunami wody naniosły wypalone resztki z całej okolicy.

To był doniosły dzień w historii życia, a tutaj mamy dobrą dokumentację z samego centrum wydarzeń, mówi profesor Jay Melosh z Purdue University. Dla naukowców równie ważne jak to, co znaleźli, jest to, czego nie znaleźli. Obszar otaczający krater uderzeniowy jest pełny skał bogatych w siarkę. Jednak siarki nie ma w rdzeniu wydobytym z krateru.

Odkrycie to potwierdza teorię mówiącą, że w wyniku uderzenia doszło do odparowania skał, olbrzymie ilości siarki trafiły do atmosfery i wywołały globalne ochłodzenie. Naukowcy szacują, że do atmosfery mogło trafić co najmniej 325 miliardów ton siarki. Aby zdać sobie sprawę, co to oznaczało dla klimatu, trzeba wiedzieć, że jest to o cztery rzędy wielkości więcej, niż ilość siarki, która trafiła do atmosfery w 1883 roku podczas erupcji wulkanu Krakatau. Erupcja ta spowodowała, że średnie temperatury na Ziemi na pięć lat obniżyły się o około 1,2 stopnia Celsjusza.

Upadek asteroidy wywołał zniszczenia na skalę regionalną. Tym, co zabiło dinozaury i wiele innych roślin oraz zwierząt były zmiany klimatu. Prawdziwym zabójcą było to, co stało się w atmosferze. Jedynym sposobem na doprowadzenie na masowego wymierania są bowiem zmiany atmosferyczne, mówi Gulick.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Sonda OSIRIS-REx pobrała tak dużo próbek z asteroidy Bennu, że zgromadzony materiał uniemożliwia zamknięcie pojemnika i próbki uciekają w przestrzeń kosmiczną. Główny naukowiec misji, Dante Lauretta poinformował, że do pojemnika trafiło znacznie więcej materiału, niż się spodziewano. Próbnik, znajdujący się na końcu robotycznego ramienia, które dotknęło asteroidy, zagłębił się w jej powierzchnię bardziej niż przewidywano i z taką siłą, że zassał materiał, który zgromadził się również na krawędziach, uniemożliwiając zamknięcie.
      Naukowcy oceniają, że próbnik wdarł się na 48 centymetrów wgłąb Bennu. Padliśmy ofiarą własnego sukcesu, mówi Lauretta. Naukowiec poinformował, że kontrola misji nie może zrobić nic, by oczyścić próbnik i zapobiec dalszemu wydostawaniu się próbek. Jedyne, co pozostaje, to jak najszybciej przenieść próbki do kontenera, w którym mają wrócić na Ziemię.
      Przypomnijmy, że OSIRIS-REx to pierwsza misja NASA, której celem jest pobranie próbek bezpośrednio z asteroidy. Zgodnie z planem sonda miała z pomocą robotycznego ramienia dotknąć asteroidy, wystrzelić w kierunku jego powierzchni sprężony azot, a wzbity w ten sposób materiał miał trafić do specjalnego pojemnika, stamtąd zaś do kontenera, w którym zostanie wysłany na Ziemię. Zakładano, że zebrane zostanie co najmniej 60 gramów materiału, a weryfikacja, czy rzeczywiście udało się go pozyskać, miała odbyć się dwuetapowo. Najpierw za pomocą kamery kontrola misji miała zobaczyć, czy materiał jest w pojemniku. Następnie OSIRIS-REx miał wykonać obrót wokół własnej osi, co pozwoliłoby na określenie wagi zebranego materiału.
      Teraz wiadomo, w pojemniku są setki gramów próbek. I pojawił się problem, bo pojemnik się nie zamyka, a próbki z niego wylatują. W związku z tym zdecydowano, że materiał zostanie przeniesiony do kapsuły w której trafi na Ziemię już we wtorek. Czyli znacznie wcześniej niż zakładał plan misji. Najważniejszy jest teraz czas, mówi Thomas Zurbuchen, dyrektor NASA ds. misji naukowych.
      Misja OSIRIS-REx to pierwsza misja NASA, w ramach której pobrane z asteroidy próbki mają zostać przywiezione na Ziemię. Jako cel wybrano asteroidę Bennu, gdyż składa się on z materiałów bogatych w węgiel i naukowcy sądzą, że znajduje się tam najstarszy materiał, z którego powstał Układ Słoneczny. Jego zdobycie i przeanalizowanie pozwoli lepiej zrozumieć jak powstał Układ Słoneczny i życie na Ziemi.
      Samo dotknięcie asteroidy przez robotyczne ramię sondy było dużym sukcesem. Operację udało się wykonać z dokładnością do 1 metra. Jednak gdy dwa dni później naukowcy przyjrzeli się zdjęciom z sondy ze zdumieniem zobaczyli chmurę materiału z Bennu krążącą wokół sondy i od niej odlatującą. Lauretta mówi, że po zablokowaniu robotycznego ramienia sytuację udało się ustabilizować, jednak nie wiadomo, jak wiele materiału zostało utracone.
      Niezależnie od tego, ile materiału udało się zebrać, OSIRIS-REx pozostanie w pobliżu Bennu aż do marca. Marzec to – biorąc pod uwagę względną pozycję Ziemi i Bennu – najbliższy możliwy termin, w którym sonda może rozpocząć powrót. Próbki trafią na Ziemię w 2023 roku.
      W związku z niemożnością zamknięcia próbnika nie będziemy wiedzieli, ile materiału udało się zebrać. Manewr obrotu wokół własnej osi został odwołany w obawie przed utratą tego, co zebrano. Musimy poczekać, aż próbki wrócą na Ziemię. Dopiero wtedy się przekonamy, ile mamy. Jak się domyślacie, jest to dla nas trudne. Dobra wiadomość jest taka, że mamy bardzo dużo materiału, mówi Lauretta.
      Pierwszymi, którym udało się przywieźć na Ziemię próbki z asteroidy, są Japończycy. Wystrzelona w 2003 rok sonda Hayabusa pobrała z asteroidy Itokawa mniej niż 1 gram materiału, który trafił na Ziemię w 2010 roku. Druga podobna misja właśnie się kończy. Na 6 grudnia bieżącego roku zaplanowano powrót próbnika z sondy Hayabusa2. Wystrzelono ją w 2014 roku, by pobrała próbki z asteroidy Ryugu. Na Ziemię wróci 100 miligramów próbek.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Sonda OSIRIS-REx dotknęła asteroidy Bennu. Na przysłanych przez nią zdjęciach widać, jak zbliża się do powierzchni asteroidy, dotyka jej wzbijając chmurę odłamków, a następnie odlatuje. Wstępne dane wskazują, że OSIRIS-REx dotknął Bennu w odległości 1 metra od wyznaczonego miejsca, co już samo w sobie jest dużym sukcesem. Urządzenie miało kontakt z asteroidą przez około 6 sekund.
      Sekundę po tym, jak głowica robotycznego ramienia TAGSAM (Touch-And-Go Sample Acquisition Mechanism) dotknęła skały, w kierunku Bennu został wystrzelony strumień sprężonego azotu, który spowodował pojawienie się jeszcze większej chmury odłamków. To właśnie zebranie próbek asteroidy jest celem misji OSIRIS-REx. Główny etap ich zbierania trwał przez pierwsze 3 sekundy.
      Na razie nie wiadomo, czy i ile próbek udało się zebrać. Jedną z metod weryfikacji będą zdjęcia robotycznego ramienia. Ponadto za dwa dni sonda ma przeprowadzić manewr polegający na obrocie wokół własnej osi, co ma pozwolić na określenie wagi zebranych próbek.
      Celem misji jest zebranie co najmniej 60 gramów materiału i dostarczenie go na Ziemię. Jeśli okaże się, że próbek jest zbyt mało, sonda ponownie spróbuje je pobrać. W takim wypadku OSIRIS-REx – nie wcześniej niż w styczniu 2021 – wyląduje w miejscu zapasowym nazwanym Osprey i wykorzysta tam dwa pozostałe pojemniki ze sprężonym azotem.
      Z przesłanych dotychczas zdjęć wynika, że sonda jest w dobrej kondycji. W momencie zbliżania się do Bennu miała prędkość 10 cm/s, oddalała się zaś z prędkością 40 cm/s. Sekwencja zdjęć rozpoczyna się w odległości około 25 metrów nad powierzchnią asteroidy, a ostatnia fotografia została wykonana na wysokości około 13 metrów, w 35 sekund po dotknięciu powierzchni Bennu.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Za cztery dni w pobliżu Ziemi pojawi się asteroida 2011 ES4. Może przelecieć bardzo blisko naszej planety. Znacznie bliżej niż odległość pomiędzy Księżycem a Ziemią. Obecnie jej przelot przewidywany jest na 1 września. Wtedy to może się ona znaleźć w odległości od 0,32 do 0,19 odległości Księżyca. Może zatem minąć Ziemię w odległości zaledwie ok. 120–72 tysięcy kilometrów. Wielkość obiektu to 22–49 metrów.
      2011 ES już wielokrotnie zbliżała się do Ziemi. Po raz pierwszy wykryto ją w 2011 roku, gdy znajdowała się w odległości około 5 milionów kilometrów od planety. Przez cztery dni prowadzono jej obserwacje i na tej podstawie określono ówczesną oraz przeszłe i przyszłe jej orbity. Z przeprowadzonych obliczeń wynika, że od 1987 roku asteroida nigdy nie była tak blisko Ziemi, jak ma się znaleźć obecnie.
      Wiemy, że 2011 ES okrąża Słońce w ciągu około 415 dni. Jej peryhelium to 0,83 j.a., a aphelium wynosi 1,35 j.a. Przez większość zbliżania się do Ziemi asteroida będzie znajdowała się blisko Słońca, więc będzie niewidoczna. Sytuacja poprawi się w ostatnich dniach, więc niewykluczone że już można ją obserwować na nocnym niebie.
      Niepewność co do czasu przelotu i orbity asteroidy jest na tyle duża, że nie można wykluczyć, że już niezauważenie minęła ona Ziemię i to w znacznie większej odległości, niż przewidywano.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Trajektoria asteroidy, która przed 66 milionami lat spadła na Ziemię i doprowadziła do zagłady dinozaurów, była dokładnie taka, jaka powinna być, by spowodować jak najwięcej zniszczeń. Nowa analiza krateru Chicxulub połączona z licznymi symulacjami komputerowymi wykazała, że prędkość i kąt uderzenia asteroidy znajdowały się w najbardziej śmiercionośnym dla Ziemi zakresie.
      Gdy asteroida uderzyła w Ziemię, wybiła olbrzymi kater, do której następnie zapadła się część materiału przemieszczona podczas uderzenia. Uderzenie skruszyło i ugięło skorupę ziemską, która następnie wyprostowała się, tworząc równinę w centrum krateru.
      Równina ta jest nachylona w kierunku, z którego nadeszło uderzenie, a kąt jej nachylenia jest zależny od kąta uderzenia asteroidy. Stąd też, na podstawie danych o budowie krateru, osadach, jego części centralnej i otaczających go wyniesieniach można wyciągnąć wiele wniosków na temat asteroidy, jej prędkości i kąta, pod jakim spadła na Ziemię.
      Naukowcy z Imperial College London przeprowadzili setki symulacji komputerowych, by sprawdzić, jak powinien wyglądać krater po uderzeniu asteroidy nadlatującej z różną prędkością i pod różnym kątem. Znaleźli w końcu taką konfigurację, która najlepiej odpowiada rzeczywistemu wyglądowi krateru Chicxulub.
      Okazało się, że asteroida, która przyniosła zagładę dinozaurom, poruszała się w tempie około 20 km/s i uderzyła w Ziemię pod kątem około 60 stopni. Większość zniszczeń zostało spowodowane przez odparowanie skał, z których materiał trafił do atmosfery, zablokował promienie słoneczne i na planecie zapanowała atomowa zima.
      Jak mówi Gareth Collins z ICL, symulacje wykazały, że kąt 60 stopni jest idealny, by wyrzucić w powietrze jak najwięcej materiału. Jeśli asteroida uderzyłaby pionowo z góry, zmiażdżyłaby więcej skał, jednak mniej materiału trafiłoby do atmosfery. Jeśli zaś uderzyłaby pod mniejszym kątem niż 60 stopni, to nie odparowałaby tak wielkiej ilości skał.
      To było uderzenie idealne, dodaje Collins. To był bardzo zły dzień dla dinozaurów. Im zaś więcej szczególnych warunków musiało być spełnionych, tym mniejsze prawdopodobieństwo, że do takiego zdarzenia dojdzie ponownie, stwierdza uczony.

      « powrót do artykułu
×
×
  • Create New...