Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Badają świadka pierwszego dnia zagłady dinozaurów

Recommended Posts

Gdy asteroida, która przyniosła zagładę dinozaurom, uderzyła w Ziemię, doszło do olbrzymich pożarów, pojawiły się wielkie tsunami, a uderzenie wyrzuciło do atmosfery olbrzymie ilości siarki, która na długo zablokowała dostęp promieni słonecznych, spowodowała ochłodzenie, co ostatecznie zabiło dinozaury.

To scenariusz znany, ale hipotetyczny. Teraz został on potwierdzony przez naukowców University of Texas, którzy zbadali setki metrów skał, jakie w ciągu 24 godzin wypełniły krater uderzeniowy.

Te dowody to m.in.kawałki węgla drzewnego, skały naniesione przez przepływ wsteczny tsunami oraz brak siarki. To zapis wypadków, który odczytujemy bezpośrednio z miejsca uderzenia. Sam świadek opowiada nam o tym wydarzeniu, mówi profesor Sean Gulick z Instytutu Geofizyki University of Texas.

Gulick stał na czele misji 2016 International Ocean Discovery Program, w ramach którego przeprowadzono wiercenia w miejscu, w którym asteroida uderzyła w naszą planetę w pobliżu Jukatanu.

Większość materiału, który wypełnił krater uderzeniowy w ciągu kilku godzin po katastrofie pochodziła albo z miejsca uderzenia, albo też została naniesiona przez wody Zatoki Meksykańskiej, które w wyniku uderzenia gwałtownie się cofnęły, a następnie zalały krater. W ciągu zaledwie doby krater został wypełniony warstwą materiału grubą na około 130 metrów. To jeden z najszybciej przebiegających procesów osadzania w historii geologii. Osady te zaczęły gromadzić się w ciągu minut i godzin po uderzeniu, stanowią więc szczegółowy zapis wydarzenia, które doprowadziło do wyginięcia 75% organizmów żywych na Ziemi. Gulick mówi, że po krótkotrwałym regionalnym piekle nastąpiła długotrwała planetarna zima. Dinozaury najpierw zostały upieczone, a później zamrożone. Nie wszystkie zginęły tego dnia, ale wiele poniosło śmierć, stwierdza uczony.

Zdaniem specjalistów energia uderzenia była 10 miliardów razy większa, niż energia bomb atomowych zrzuconych na Japonię. Była tak olbrzymia, że tysiące kilometrów dalej zapaliły się rośliny, a potężne tsunami dotarło na tereny dzisiejszego stanu Illinois. Teraz wewnątrz krateru znaleziono węgiel drzewny oraz chemiczny biomarker grzybów, co wskazuje, że powracające po tsunami wody naniosły wypalone resztki z całej okolicy.

To był doniosły dzień w historii życia, a tutaj mamy dobrą dokumentację z samego centrum wydarzeń, mówi profesor Jay Melosh z Purdue University. Dla naukowców równie ważne jak to, co znaleźli, jest to, czego nie znaleźli. Obszar otaczający krater uderzeniowy jest pełny skał bogatych w siarkę. Jednak siarki nie ma w rdzeniu wydobytym z krateru.

Odkrycie to potwierdza teorię mówiącą, że w wyniku uderzenia doszło do odparowania skał, olbrzymie ilości siarki trafiły do atmosfery i wywołały globalne ochłodzenie. Naukowcy szacują, że do atmosfery mogło trafić co najmniej 325 miliardów ton siarki. Aby zdać sobie sprawę, co to oznaczało dla klimatu, trzeba wiedzieć, że jest to o cztery rzędy wielkości więcej, niż ilość siarki, która trafiła do atmosfery w 1883 roku podczas erupcji wulkanu Krakatau. Erupcja ta spowodowała, że średnie temperatury na Ziemi na pięć lat obniżyły się o około 1,2 stopnia Celsjusza.

Upadek asteroidy wywołał zniszczenia na skalę regionalną. Tym, co zabiło dinozaury i wiele innych roślin oraz zwierząt były zmiany klimatu. Prawdziwym zabójcą było to, co stało się w atmosferze. Jedynym sposobem na doprowadzenie na masowego wymierania są bowiem zmiany atmosferyczne, mówi Gulick.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Trajektoria asteroidy, która przed 66 milionami lat spadła na Ziemię i doprowadziła do zagłady dinozaurów, była dokładnie taka, jaka powinna być, by spowodować jak najwięcej zniszczeń. Nowa analiza krateru Chicxulub połączona z licznymi symulacjami komputerowymi wykazała, że prędkość i kąt uderzenia asteroidy znajdowały się w najbardziej śmiercionośnym dla Ziemi zakresie.
      Gdy asteroida uderzyła w Ziemię, wybiła olbrzymi kater, do której następnie zapadła się część materiału przemieszczona podczas uderzenia. Uderzenie skruszyło i ugięło skorupę ziemską, która następnie wyprostowała się, tworząc równinę w centrum krateru.
      Równina ta jest nachylona w kierunku, z którego nadeszło uderzenie, a kąt jej nachylenia jest zależny od kąta uderzenia asteroidy. Stąd też, na podstawie danych o budowie krateru, osadach, jego części centralnej i otaczających go wyniesieniach można wyciągnąć wiele wniosków na temat asteroidy, jej prędkości i kąta, pod jakim spadła na Ziemię.
      Naukowcy z Imperial College London przeprowadzili setki symulacji komputerowych, by sprawdzić, jak powinien wyglądać krater po uderzeniu asteroidy nadlatującej z różną prędkością i pod różnym kątem. Znaleźli w końcu taką konfigurację, która najlepiej odpowiada rzeczywistemu wyglądowi krateru Chicxulub.
      Okazało się, że asteroida, która przyniosła zagładę dinozaurom, poruszała się w tempie około 20 km/s i uderzyła w Ziemię pod kątem około 60 stopni. Większość zniszczeń zostało spowodowane przez odparowanie skał, z których materiał trafił do atmosfery, zablokował promienie słoneczne i na planecie zapanowała atomowa zima.
      Jak mówi Gareth Collins z ICL, symulacje wykazały, że kąt 60 stopni jest idealny, by wyrzucić w powietrze jak najwięcej materiału. Jeśli asteroida uderzyłaby pionowo z góry, zmiażdżyłaby więcej skał, jednak mniej materiału trafiłoby do atmosfery. Jeśli zaś uderzyłaby pod mniejszym kątem niż 60 stopni, to nie odparowałaby tak wielkiej ilości skał.
      To było uderzenie idealne, dodaje Collins. To był bardzo zły dzień dla dinozaurów. Im zaś więcej szczególnych warunków musiało być spełnionych, tym mniejsze prawdopodobieństwo, że do takiego zdarzenia dojdzie ponownie, stwierdza uczony.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NASA zaprezentowała całościową mapę powierzchni asteroidy Bennu. To kolaż zdjęć zgromadzonych w ramach misji OSIRIS-REx między 7 marca a 19 kwietnia 2019 r.
      By uzyskać mozaikę, wykorzystano aż 2155 zdjęć wykonanych przez PolyCam. Naukowcy z NASA chwalą się, że udało się uzyskać największą rozdzielczość (5 cm na piksel), z jaką kiedykolwiek całościowo zmapowano Bennu.
      OSIRIS-REx wykonywał ujęcia z odległości od 3,1 do 5 km od powierzchni asteroidy. Dzięki szczegółowemu widokowi Bennu NASA mogła wybrać miejsca pobrania próbek: główne, czyli Nightingale w kraterze w północnej części asteroidy, oraz zapasowe - Osprey.
      Mapę-mozaikę można ściągnąć w różnych rozmiarach w dwóch wersjach: z koordynatami i bez.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W kwietniu ubiegłego roku japońska sonda Hayabusa 2 wystrzeliła w kierunku asteroidy Ryugu miedziany pocisk. Uderzenie odsłoniło wnętrze asteroidy. Wyrzucony podczas uderzenia materiał opadł na powierzchnię asteroidy. Trzy miesiące później w miejscu opadnięcia materiału wylądowała Hayabusa 2 i wystrzeliła drugi pocisk, z tantalu. Jego celem było wzbicie chmury pyłu, który miał trafić do specjalnego pojemnika. Hayabusa 2 wraca obecnie na Ziemię. Ma wylądować z próbkami w grudniu bieżącego roku.
      W tej chwili nie wiemy, czy udało się pobrać próbki, jednak znamy wyniki szczegółowych obserwacji krateru, który został wybity przez pierwszy z wystrzelonych pocisków. Krater miał 14,5 metra średnicy i 2,3 metry głębokości. Po raz pierwszy byliśmy w stanie obserwować krater utworzony w środowisku mikrograwitacji, mówi Masahiko Arakawa z Uniwersytetu w Kobe.
      Dzięki tym obserwacjom wiemy, ile lat liczy sobie Ryugu. Dotychczasowe szacunki znacznie się od siebie różniły. Wiek asteroidy oceniano na 9 lub 160 milionów lat. Japończycy donieśli, że po powierzchnią struktura asteroidy bardziej przypomina piasek niż skałę. To zaś oznacza, że Ryugu ma zaledwie 9 milionów lat.
      Asteroidy takie jak Ryugu powstają, gdy dojdzie do zderzenia dwóch większych obiektów, a następnie ma miejsce ponowna akumulacja materiału rozrzuconego w wyniku zderzenia. Zwykle z takiego zderzenia zostaje utworzonych wiele obiektów. Niewykluczone, że w przyszłości zaobserwujemy innych członków „rodziny” Ryugu. Może to być tym łatwiejsze, że skoro do zderzenia doszło niedawno, to inne asteroidy z niego pochodzące powinny znajdować się w pobliżu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Minor Planet Centre ogłosiło właśnie, że Ziemia ma... dwa księżyce. Poza Srebrnym Globem naszą planetę okrąża jeszcze jeden księżyc, który został przechwycony przez Ziemię przed około 3 laty. Nie zobaczymy go jednak gołym okiem. Nowy księżyc ma zaledwie od 1 do 6 metrów średnicy i zbyt długo z nami nie pozostanie.
      Po raz pierwszy został on zauważony przez Theodore'a Pruyne'a i Kacpera Wierzchosa za pomocą teleskopu w Mount Lemmon Observatory w Arizonie. Uczeni spostrzegli nieznany dotychczas obiekt 15 lutego. Kolejne obserwacje pozwoliły obliczyć jego orbitę i potwierdzić, że jest on powiązany z Ziemią. W związku z tym Minor Planet Center, które pracuje w imieniu Międzynarodowej Unii Astronomicznej, oficjalnie ogłosiło odkrycie i nadało księżycowi nazwę 2020 CD3.
      Obiekt ten to niewielka asteroida, której orbita skrzyżowała się z orbitą Ziemi. Czasem takie asteroidy przelatują obok naszej planety, czasem na nią spadają. Jednak 2020 CD3 została przechwycona i stała się naszym tymczasowym księżycem. Te tak zwane „mini księżyce” pojawiają się i znikają. Autorzy jednego z wcześniejszych badań twierdzą, że w każdym momencie Ziemia posiada przynajmniej jeden dodatkowy czasowy mini-księżyc o średnicy powyżej 1 metra, który wykonuje co najmniej jeden pełny obieg wokół Ziemi.
      Żaden z tych księżyców nie zostaje na długo, gdyż oddziaływania grawitacyjne Księżyca i Słońca destabilizują ich orbity. Najprawdopodobniej krążą one wokół Ziemi najwyżej przez kilka lat, później uwalniają się spod jej wpływu i zajmują orbitę wokół Słońca.
      2020 CD3 znajduje się dalej niż Księżyc i prawdopodobnie odbywa obecnie ostatnie okrążenie wokół naszej planety.
      Poprzednim odkrytym tymczasowym księżycem Ziemi był 2006 RH120. Pomiędzy wrześniem 2006 a czerwcem 2007 czterokrotnie okrążył on Ziemię, a później poleciał swoją drogą. Obecnie znajduje się po drugiej stronie Słońca, a Ziemię ponownie odwiedzi w 2028 roku.
      Istnieje też hipoteza mówiąca, że „mini księżyce” to asteroidy, których okres orbitalny wokół Słońca wynosi dokładnie 1 rok. Czasem ich orbity zbiegają się z naszą, wówczas wydają się powiązane z Ziemią, ale w rzeczywistości krążą niezależnie wokół Słońca. Mówi się tutaj o „kwazi-satelitach” Ziemi. Jeden z nich, 1991 VG, prawdopodobnie dokonał co najmniej jednego obiegu wokół naszej planety. Niewykluczone, że powtórzy to w przyszłości.

      « powrót do artykułu
×
×
  • Create New...