Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Badają świadka pierwszego dnia zagłady dinozaurów

Rekomendowane odpowiedzi

Gdy asteroida, która przyniosła zagładę dinozaurom, uderzyła w Ziemię, doszło do olbrzymich pożarów, pojawiły się wielkie tsunami, a uderzenie wyrzuciło do atmosfery olbrzymie ilości siarki, która na długo zablokowała dostęp promieni słonecznych, spowodowała ochłodzenie, co ostatecznie zabiło dinozaury.

To scenariusz znany, ale hipotetyczny. Teraz został on potwierdzony przez naukowców University of Texas, którzy zbadali setki metrów skał, jakie w ciągu 24 godzin wypełniły krater uderzeniowy.

Te dowody to m.in.kawałki węgla drzewnego, skały naniesione przez przepływ wsteczny tsunami oraz brak siarki. To zapis wypadków, który odczytujemy bezpośrednio z miejsca uderzenia. Sam świadek opowiada nam o tym wydarzeniu, mówi profesor Sean Gulick z Instytutu Geofizyki University of Texas.

Gulick stał na czele misji 2016 International Ocean Discovery Program, w ramach którego przeprowadzono wiercenia w miejscu, w którym asteroida uderzyła w naszą planetę w pobliżu Jukatanu.

Większość materiału, który wypełnił krater uderzeniowy w ciągu kilku godzin po katastrofie pochodziła albo z miejsca uderzenia, albo też została naniesiona przez wody Zatoki Meksykańskiej, które w wyniku uderzenia gwałtownie się cofnęły, a następnie zalały krater. W ciągu zaledwie doby krater został wypełniony warstwą materiału grubą na około 130 metrów. To jeden z najszybciej przebiegających procesów osadzania w historii geologii. Osady te zaczęły gromadzić się w ciągu minut i godzin po uderzeniu, stanowią więc szczegółowy zapis wydarzenia, które doprowadziło do wyginięcia 75% organizmów żywych na Ziemi. Gulick mówi, że po krótkotrwałym regionalnym piekle nastąpiła długotrwała planetarna zima. Dinozaury najpierw zostały upieczone, a później zamrożone. Nie wszystkie zginęły tego dnia, ale wiele poniosło śmierć, stwierdza uczony.

Zdaniem specjalistów energia uderzenia była 10 miliardów razy większa, niż energia bomb atomowych zrzuconych na Japonię. Była tak olbrzymia, że tysiące kilometrów dalej zapaliły się rośliny, a potężne tsunami dotarło na tereny dzisiejszego stanu Illinois. Teraz wewnątrz krateru znaleziono węgiel drzewny oraz chemiczny biomarker grzybów, co wskazuje, że powracające po tsunami wody naniosły wypalone resztki z całej okolicy.

To był doniosły dzień w historii życia, a tutaj mamy dobrą dokumentację z samego centrum wydarzeń, mówi profesor Jay Melosh z Purdue University. Dla naukowców równie ważne jak to, co znaleźli, jest to, czego nie znaleźli. Obszar otaczający krater uderzeniowy jest pełny skał bogatych w siarkę. Jednak siarki nie ma w rdzeniu wydobytym z krateru.

Odkrycie to potwierdza teorię mówiącą, że w wyniku uderzenia doszło do odparowania skał, olbrzymie ilości siarki trafiły do atmosfery i wywołały globalne ochłodzenie. Naukowcy szacują, że do atmosfery mogło trafić co najmniej 325 miliardów ton siarki. Aby zdać sobie sprawę, co to oznaczało dla klimatu, trzeba wiedzieć, że jest to o cztery rzędy wielkości więcej, niż ilość siarki, która trafiła do atmosfery w 1883 roku podczas erupcji wulkanu Krakatau. Erupcja ta spowodowała, że średnie temperatury na Ziemi na pięć lat obniżyły się o około 1,2 stopnia Celsjusza.

Upadek asteroidy wywołał zniszczenia na skalę regionalną. Tym, co zabiło dinozaury i wiele innych roślin oraz zwierząt były zmiany klimatu. Prawdziwym zabójcą było to, co stało się w atmosferze. Jedynym sposobem na doprowadzenie na masowego wymierania są bowiem zmiany atmosferyczne, mówi Gulick.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Ziemia doświadczyła co najmniej 5 epizodów masowego wymierania. Przyczyny niektórych z nich, jak wymierania kredowego, kiedy wyginęły dinozaury, są znane. Co do innych wymierań, nie mamy takiej pewności. Od pewnego czasu pojawiają się głosy, że za przynajmniej jedno z wymierań odpowiedzialny był wybuch supernowej. Autorzy nowych badań uważają, że bliskie Ziemi supernowe już co najmniej dwukrotnie doprowadziły do wymierania gatunków. I nie mamy gwarancji, że sytuacja się nie powtórzy.
      Podczas eksplozji supernowej dochodzi do emisji olbrzymich ilości promieniowania ultrafioletowego, X czy gamma. Z badań przeprowadzonych w 2020 roku wiemy, że wybuch supernowej w odległości mniejszej niż 10 parseków (ok. 33 lata świetlne) od Ziemi, całkowicie zabiłby życie na naszej planecie. Za wymierania mogą więc odpowiadać wybuchy, do których doszło w odległości około 20 parseków (pc). Zginęłoby wówczas wiele gatunków, ale samo życie by przetrwało.
      Alexis L. Quintana z Uniwersytetu w Alicante oraz Nicholas J. Wright i Juan Martínez García z Keele University przyjrzeli się 24 706 gwiazdom OB znajdujących się w odległości 1 kiloparseka (kpc), czyli 3261 lat świetlnych od Słońca. Dzięki temu obliczyli tempo tworzenia się takich gwiazd, liczbę supernowych oraz liczbę supernowych bliskich Ziemi. Na podstawie tych obliczeń doszli do wniosku, że supernowe mogły odpowiadać za dwa masowe wymierania na Ziemi – ordowickie sprzed 438 milionów lat oraz dewońskie, do którego doszło 374 miliony lat temu.
      Autorzy wspomnianych badań z 2020 roku stwierdzili, że supernowa Typu II była odpowiedzialna z kryzys Hangenberg, końcowy epizod wymierania dewońskiego. Ich zdaniem, promieniowanie z wybuchu supernowej docierało do Ziemi przez 100 000 lat, doprowadziło do olbrzymiego zubożenia warstwy ozonowej i masowego wymierania.
      Quintana, Wright i García wyliczają, że do eksplozji supernowej w odległości 20 pc od Ziemi dochodzi raz na około 2,5 miliarda lat.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Długość, szerokość i głębokość dwóch kanionów znajdujących się po niewidocznej z Ziemi stronie Księżyca są podobne do rozmiarów Wielkiego Kanionu Kolorado, informują naukowcy z Lunar and Planetary Institute (LPI). O ile jednak Wielki Kanion powstawał przez miliony lat, kaniony na Księżycu pojawiły się w czasie krótszym niż... 10 minut.
      Niemal cztery miliardy lat temu asteroida lub kometa przeleciała nad biegunem południowym Księżyca, otarła się o szczyty Malapert i Mouton i uderzyła w powierzchnię. Zderzenie wyrzuciło strumienie skał, które wyrzeźbiły kaniony o rozmiarach ziemskiego Wielkiego Kanionu, mówi główny autor badań, David Kring z Universities Space Research Association do którego należy LPI.
      Obiekt, który utworzył oba kaniony, w chwili uderzenia pędził z prędkością 55 000 kilometrów na godzinę. W wyniku upadku powstał 320-kilometrowy krater uderzeniowy Schrödinger. Przyciągnął on uwagę grupy naukowców, stając się okazją do zbadania wczesnych etapów rozwoju Układu Słonecznego.
      Dzięki danym dostarczonym przez Lunar Reconnaissance Orbiter naukowcy poznali rozmiary kanionów. Vallis Schrödinger ma ok. 270 km długości, ok. 20 km szerokości i 2,7 km głębokości, a Vallis Planck – 280 km długości, 27 szerokości i 3,5 km głębokości, a na długości 860 km rozciągają się kratery uderzeniowe powstałe w wyniku upadku materiału, który go wyrzeźbił.
      Badania pokazały, że kratery powstały w wyniku uderzeń szczątków z upadku asteroidy lub komety. Wyrzucone w wyniku pierwotnego uderzenia skały leciały z prędkością 3600 km/h wywołując kolejne uderzenia, która wyrzeźbiły kaniony. Energia potrzebna do ich powstania była 130-krotnie większa niż energia całej broni atomowej będącej w posiadaniu ludzkości.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Badania próbek asteroidy Bennu dostarczonych na Ziemię przez misję OSIRIS-REx wykazały, że znajdują się tam molekuły, które na Ziemi są niezbędnymi składnikami do powstania życia. Znaleziono też ślady świadczące o obecności słonej wody. Mogła ona być miejscem, w którym dochodziło do interakcji i łączenia się tych molekuł.
      NASA zastrzega, że odkrycie nie jest równoznaczne z odkryciem życia na asteroidzie. Sugeruje ono jednak, że we wczesnym Układzie Słonecznym powszechnie istniały warunki niezbędne do powstania życia, a to zwiększa prawdopodobieństwo znalezienia go na innych ciałach niebieskich.
      Na łamach Nature i Nature Astronomy ukazały się dwa artykuły, w których naukowcy z NASA i innych instytucji – zarówno z USA, jak i Niemiec, Japonii, Francji, Wielkiej Brytanii czy Australii – omawiają wyniki swoich badań.
      W Nature Astronomy zespół prowadzony przez Daniela P. Glavina z NASA informuje, że na asteroidzie zidentyfikowano 14 z 20 podstawowych (kanonicznych) aminokwasów białkowych, z których powstają białkna na Ziemi oraz wszystkie pięć podstawowych zasad azotowych nukleotydów, które ziemskie organizmy żywe wykorzystują do przechowywania i przekazywania informacji genetycznej. Odnotowano też bardzo wysoki poziom amoniaku. Jest on bardzo ważny z punktu widzenia biologii, gdyż reaguje z formaldehydem – również znalezionym w próbkach z Bennu – i w odpowiednich warunkach tworzy bardziej złożone molekuły, jak aminokwasy.
      Wszystkie elementy niezbędne do powstania życia, które znaleziono na Bennu, zidentyfikowano już wcześniej na innych skałach pochodzenia kosmicznego. Tym razem jednak mamy dziewicze próbki pobrane w przestrzeni kosmicznej, co wspiera hipotezę mówiącą, że obiekty, które powstały z dala od Słońca, mogły być waźnym źródłem rozprzestrzeniania się życiodajnych molekuł po Układzie Słonecznym.
      Glavin i jego koledzy szukali molekuł niezbędnych do powstania życia. Tymczasem Tim J. McCoy, kurator zbiorów meteorytów z Narodowego Muzeum Historii Naturalnej, szukał na Bennu informacji o środowisku, w jakim molekuły te powstały. Wraz z zespołem informuje na łamach Nature o znalezieniu 11 minerałów, które powstają, gdy zawierające sole woda odparowuje przez długi czas, pozostawiając po sobie kryształy soli. Podobne co na Bennu solanki prawdopodobnie istnieją na planecie karłowatej Ceres oraz księżycu Saturna, Enceladusie.
      Naukowcy już wcześniej wykrywali na znalezionych na Ziemi meteorytach różne produkty takiego odparowywania, jednak dotychczas nie mieli okazji badać ostatecznych produktów takiego odparowywania trwającego przez tysiące lub więcej lat. Na Bennu znaleziono też kilka minerałów, w tym sodę naturalną, tzw. tronę, których nigdy wcześniej nie zaobserwowano na próbkach pochodzących spoza Ziemi.
      Badania dostarczają wielu nowych informacji, ale pozostawiają bez odpowiedzi liczne pytania. Niemal wszystkie aminokwasy są chiralne, a więc występują w dwóch wariantach, będących swoim lustrzanym odbiciem. Organizmy żywe na Ziemi wykorzystują wyłącznie konformację L- (są lewostronne). Tymczasem na Bennu występowały one w postaci mieszaniny racemicznej, czyli zawierającej równe ilości obu wariantów. To najprawdopodobniej oznacza, że na wczesnej Ziemi aminokwasy również występowały w postaci takich mieszanin. Zatem wciąż jest tajemniczą, dlaczego życie wybrało lewo-, a nie prawostronność.
      Misja OSIRIS-REx została wystrzelona w 2016 roku. W 2020 informowaliśmy, że padła ofiarą własnego sukcesu i pobrała tak dużo próbek, iż pojemnik się nie zamyka, więc NASA musi znaleźć awaryjne rozwiązanie problemu. Próbki trafiły na Ziemię w 2023 roku. W międzyczasie zaś, gdy było wiadomo, że misja OSIRIS-REx z powodzeniem pobrała próbki z Bennu i gdy rozpoczął się powrót pojazdu, specjaliści zaczęli zastanawiać się, co dalej. Plan misji zakładał bowiem od początku, że OSIRIS-REx po uwolnieniu pojemnika z próbkami odleci w kierunku zewnętrznych obszarów Układu Słonecznego. Naukowcy chcieli więc wykorzystać sprawny, posiadający paliwo pojazd. Tym bardziej, że został on zaprojektowany nie do przelotu obok wybranego celu, a do zadań związanych z bliskim spotkaniem i prowadzeniem badań. W końcu zdecydowano, że pojazd poleci do 400-metrowej asteroidy Apophis. Tej samej, która w 2029 roku zbliży się do Ziemi na odległość mniejszą niż satelity na orbicie geosynchronicznej.
      Przemianowana na OSIRIS-APEX misja będzie przez 18 miesięcy towarzyszyła asteroidzie. Co prawda nie pobierze żadnych próbek, ale wykona manewr polegający na podleceniu bardzo blisko i uruchomienie silników, wskutek czego być może uda się odsłonić część tego, co znajduje się pod jej powierzchnią. Naukowcy chcą się dowiedzieć, jaki będzie wpływ fizyczny przyciągania ziemskiego na asteroidę, mają też nadzieję poznać jej skład.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Jeszcze do niedawna naukowcy potrafili określi miejsce pochodzenia jedynie 6% meteorytów znalezionych na Ziemi. Teraz naukowcy z francuskiego Narodowego Centrum Badań Naukowych (CNRS), Europejskiego Obserwatorium Południowego i czeskiego Uniwersytetu Karola wykazali, że 70% wszystkich znalezionych na naszej planecie meteorytów pochodzi z trzech młodych rodzin asteroid.
      Rodziny te to wyniki trzech zderzeń, do których doszło w głównym pasie asteroid 5,8, 7,5 oraz 40 milionów lat temu. Badacze określili też źródło innych meteorytów, dzięki czemu możemy teraz zidentyfikować miejsce pochodzenia ponad 90% skał, które z kosmosu spadły na Ziemię. Wyniki badań zostały opublikowane w trzech artykułach. Jeden ukazał się łamach Astronomy and Astrophysics, a dwa kolejne na łamach Nature.
      Wspomniane rodziny asteroid to – od najmłodszej do najstarszej – Karin, Koronis i Massalia. Wyróżnia się Massalia, która jest źródłem 37% meteorytów. Dotychczas na Ziemi odnaleziono podczas 700 000 okruchów z kosmosu. Jedynie 6% z nich zidentyfikowano jako achondryty pochodzące z Księżyca, Marsa lub Westy, jednego z największych asteroid głównego pasa. Źródło pozostałych 94%, z których większość do chondryty, pozostawało nieznane.
      Jak to jednak możliwe, że źródłem większości znalezionych meteorytów są młode rodziny asteroid? Autorzy badań wyjaśniają, że rodziny takie charakteryzują się dużą liczbą niewielkich fragmentów powstałych w wyniku niedawnych kolizji. Ta obfitość zwiększa prawdopodobieństwo kolejnych zderzeń, co w połączeniu z duża mobilnością tych szczątków, powoduje, że mogą zostać wyrzucone z głównego pasa asteroid, a część z nich poleci w kierunku Ziemi. Starsze rodziny asteroid nie są tak liczne. Przez wiele milionów lat mniejsze fragmenty, ale na tyle duże, że mogłyby spaść na Ziemię, zniknęły w wyniku kolejnych zderzeń i ucieczki z pasa asteroid.
      Określenie pochodzenia większości meteorytów było możliwe dzięki teleskopowym badaniom składu większości rodzin asteroid w głównym pasie oraz zaawansowanymi symulacjami komputerowymi, podczas których badano dynamikę tych rodzin.
      Autorzy badań określili też pochodzenie wielkich asteroid, takich jak Ryugu czy Bennu. Okazało się, że pochodzą one od tego samego przodka co rodzina asteroid Polana.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wszystkie duże planety Układu Słonecznego posiadają pierścienie, w kręgach naukowych pojawiaj się sugestie, że pierścienie mógł posiadać Mars. To rodzi pytanie o ewentualne pierścienie wokół Ziemi. Naukowcy z australijskiego Monash University znaleźli pierwsze dowody sugerujące, że nasza planeta również posiadała pierścień. Uczeni przyjrzeli się 21 kraterom uderzeniowym pochodzącym z trwającego ok. 40 milionów lat okresu intensywnych bombardowań Ziemi przez meteoryty, do których doszło w ordowiku.
      Początek tego okresu wyznacza znaczny wzrost materiału pochodzącego z chondrytów L (chondryty oliwinowo-hiperstenowe), które znajdują się w warstwie sprzed 465,76 ± 0,30 milionów lat. Od dawna przypuszcza się, że bombardowanie to było spowodowane przez rozpad z pasie asteroid dużego obiektu zbudowanego z chondrytów L.
      Uczeni z Monash zauważyli, że wszystkie badane przez nich kratery uderzeniowe znajdowały się w ordowiku w pasie wokół równika, ograniczonym do 30 stopni szerokości północnej lub południowej. Tymczasem aż 70% kraterów uderzeniowych na Ziemi powstało na wyższych szerokościach geograficznych. Zdaniem uczonych, prawdopodobieństwo, że asteroidy, po których pozostały wspomniane kratery, pochodziły z pasa asteroid, wynosi 1:25 000 000. Dlatego też zaproponowali inną hipotezę.
      Andrew G. Tomkins, Erin L. Martin i Peter A. Cawood uważają, że około 466 milionów lat temu od przelatującej w pobliżu Ziemi asteroidy, w wyniku oddziaływania sił pływowych planety, oderwał się duży fragment, który rozpadł się na kawałki. Materiał ten utworzył pierścień wokół Ziemi. Stopniowo fragmenty pierścienia zaczęły opadać na planetę.
      Ponadto proponujemy, że zacienienie Ziemi przez pierścień było powodem pojawienia się hirnantu, piszą autory badań. Hirnant to krótkotrwały ostatni wiek późnego ordowiku. Jego początki wiązały się z ochłodzeniem klimatu, zlodowaceniem i znacznym spadkiem poziomu oceanów.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...