Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Naukowcy z Uniwersytetu Cornella uzyskali niskokaloryczne smarowidło do chleba, które składa się głównie z wody. Amerykanie zaproponowali nowy proces emulgowania dużych ilości wody z odrobiną oleju roślinnego i tłuszczu mlecznego. W zamierzeniu całość miała przypominać masło, zawierając przy tym tylko 1/4 kalorii oryginału.

Wyobraźmy sobie 80% wody w 20% oleju i produkt o konsystencji, teksturze i kremowości masła - opowiada prof. Alireza Abbaspourrad.

Emulgowanie wody i oleju nie jest niczym nowym, ale uciekając się do emulsji wysokofazowej (ang. high-internal phase emulsions, HIPE), mogliśmy dodawać wodę do uzyskania ostatecznego składu, w którym woda stanowi 80%, a olej 20%.

Łyżka stołowa tego niskokalorycznego smarowidła zawiera 2,8 g tłuszczu i 25,5 kcal. Dla porównania, łyżka masła, które składa się w 84% z tłuszczu i 16% z wody, zawiera ok. 11 g tłuszczu i blisko 100 kcal.

W przypadku procesu HIPE, kiedy woda i olej są emulgowane w proporcji 3:1, faza rozproszona (emulsja) tworzy sfery. Gdy jednak stosunek wody do oleju wzrasta do 4:1, sfery zaczynają się deformować i przybliżać do siebie. Zaczynają się ścieśniać, a gęstsze upakowanie skutkuje większym tarciem. Sfery nie mogą się swobodnie przesuwać, nigdzie już nie uciekną. W efekcie pojawia się coś o konsystencji masła.

Zapotrzebowanie na niskotłuszczowe, a zarazem wysokobiałkowe produkty szybko wzrosło w związku z rosnącą świadomością zdrowotną konsumentów - podkreśla Michelle C. Lee, doktorantka z zespołu Abbaspourrada. Ponieważ technologia HIPE wiąże się z wysokim stosunkiem wody do oleju i jednocześnie zapewnia unikatową teksturę [...], może odegrać pewną rolę w dostarczaniu konsumentom zdrowszych produktów.

Do smarowidła możemy dodać białka mleka bądź roślinne. Ponieważ woda spełnia funkcję nośnika, możemy [też] dostosowywać wartość odżywczą produktu i uzupełniać go witaminami lub zmieniać smak. Zasadniczo uzyskujemy coś, co przypomina masło, ale zawiera niewielkie ilości tłuszczów nasyconych. To zupełnie inna formuła.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Życie ponad miliarda osób w Azji uzależnione jest od monsunów, które są głównym źródłem wody. Azjatycki monsun jest ściśle powiązany z globalnym przepływem powietrza z tropików. Tymczasem naukowcy z Lawrence Berkeley National Laboratory (Berkeley Lab) informuję, że w miarę ocieplania się klimatu dojdzie do zmiany rozkładu monsunów i w niektórych miejscach dostawy wody będą mniejsze.
      Badacze z Berkeley Lab, Wenhou Zhou i Da Yang oraz Shang-Ping Xie ze Scirpps Institution of Oceanography, wykorzystali modele klimatyczne do zbadania komórki Hadleya. To część wielkoskalowej cyrkulacji atmosferycznej. To właśnie komórka Hadleya umożliwia bezpośredni transport ciepła z równika do zwrotników.
      Komórka Hadleya składa się z dwóch części. Wilgotnego gorącego powietrza, która unosi się ze strefy równikowej, powodując wielkie opady w czasie monsunów, oraz suchego gorącego powietrza, które obniża się w strefach zwrotnikowych. W wyniku tego wieją pasaty, od wieków wykorzystywane przez żeglarzy, i mamy suche strefy subtropikalne.
      Z najnowszych badań wynika, że w miarę ocieplania się klimatu sucha i gorąca część subtropikalna komórki Hadleya będzie rozszerzała się w kierunku biegunów, a część wilgotna będzie kurczyła się w kierunku równika. Na potrzeby swoich badań naukowcy przyjęli najbardziej pesymistyczny scenariusz rozwoju sytuacji opisany przez IPCC.
      Wcześniejsze badania wykazywały zwykle, że komórka Hadleya będzie się rozszerzała w kierunku biegunów. Wykazaliśmy jednak, że w miesiącach letnich sytuacja będzie inna. W związku z ocieplaniem się strefy równikowej w czerwcu i lipcu komórka będzie się kurczyła w kierunku równika, mówi Zhou. To będzie miało olbrzymi wpływ na Azję Wschodnią, gdzie właśnie w miesiącach letnich notuje się obecnie największe opady. Monsun jest ważnym źródłem wody dla Azji Wschodniej i olbrzymiej części Chin. Jeśli się on zmieni lub przemieści, to będzie miało to olbrzymi wpływ na codzienne życie mieszkańców tych terenów, stwierdził Yang.
      Uczeni zauważają, że na razie na podstawie obserwacji nie można stwierdzić, czy uzyskane przez nich wyniki są prawidłowe. Obserwacje monsunów z ostatnich 30 lat sugerują bowiem, że ich zachowanie jest zdeterminowane naturalną zmiennością. Wpływ ocieplenia klimatu na monsuny jeszcze się nie ujawnił. Innymi słowy, dopiero w przyszłości zobaczymy wpływ zmian klimatu na monsuny, dodaje Yang.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NASA poinformowała, że zanim na Księżyc trafią ludzie, wyśle tam misję, której celem będzie znalezienie źródeł wody dla astronautów. O misji VIPER (Volatiles Investigating Polar Exploration Rover) poinformowano w ostatni piątek, podczas Międzynarodowego Kongresu Astronautycznego. NASA chce, by łazik wylądował na Srebrnym Globie do grudnia 2022 roku.
      Misja VIPER miałaby potrwać 100 dni. W tym czasie łazik ma przejechać kilkanaście kilometrów poszukując śladów wody. Przeprowadzone przez niego badania pozwolą zdecydować, gdzie będą lądowli astronauci pracujący w ramach programu Artemis.
      VIPER zostanie wyposażony w cztery instrumeny do poszukiwania wody. Najważniejszy będzie Neutron Spectrometer System, który ma wykrywać wilgoć pod powierzchnią Srebrnego Globu. Następnie wiertło TRIDENT pobierze próbki, a dwa kolejne instrumenty je przeanalizują. VIPER będzie pobierał i analizował próbkiz różnych miejsc, co pozwoli stworzyć mapę obszaru, na którym z największym prawdopodobieństwem występuje woda.
      Woda na Księżycu będzie kluczowym elementem długotrwałej obecności ludzi na Srebrnym Globie. Potrzebna ona będzie nie tylko do picia, ale również do produkcji paliwa dla rakiet, które w przyszłości zawiozą człowieka na Marsa.
      Lód został znaleziony na południowym biegunie Księżyca już przed 10 laty. Tamten region jest więc przedmiotem szczególnego zainteresowania. Nie tylko zresztą NASA. We wrześniu Indie próbowały wysłać tam swój pierwszy księżycowy łazik. Niestety urządzenie rozbiło się podczas lądowania.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Australijsko-amerykański zespół naukowy odkrył mechanizm regeneracji molekuł wody na powierzchni asteroid. Nie można wykluczyć, że wyniki badań będzie można przełożyć na inne ciała niebieskie, jak np. księżyce.
      W artykule opublikowanym na łamach Nature Astronomy czytamy: na powierzchni asteroid znajdowano spektroskopowe sygnatury wody i rodników hydroksylowych. Jako, że okres istnienia lodu na odsłoniętych powierzchniach asteroid z pasa wewnętrznego wynosi od 104 do 106 lat, musi istnieć mechanizm zastępowania wody w obliczu braku niedawnych procesów jej wypływania na powierzchnię. Wciąż jednak nie udało się go opisać. W poniższym artykule przedstawiamy eksperymenty laboratoryjne, w czasie których próbki meteorytu Murchinson były wystawiane na działanie wysoko energetycznych elektronów i światła lasera, co symulowało, elektrony wtórne generowane przez wiatr słoneczny, promieniowanie kosmiczne oraz uderzenia mikrometeorytów w asteroidę. Odkryliśmy, że działanie jednego tyko czynnika jest niewystarczające i do regeneracji wody przy niskich temperaturach potrzebne są oba czynniki. Sądzimy, że dwa główne mechanizmy powstawania wody na powierzchni asteroid to utlenianie związków organicznych w niskiej temperaturze i dehydracja minerałów.
      Głównym autorem badań jest doktor Katarina Milijkovic ze Space Science and Technology Centre Curtin University, a w skład jej zespołu wchodzili uczeni z University of Hawai'i oraz California State University San Marcos.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy ze szwedzkiego Uniwersytetu Technologicznego Chalmers obalili teorię mówiącą, że obie nici DNA są utrzymywane przez wiązania atomów wodoru. Okazuje się, że kluczem są siły hydrofobowe, nie atomy wodoru. Odkrycie to może mieć duże znaczenie dla medycyny i innych nauk biologicznych.
      Helisa DNA składa się z dwóch nici zawierających molekuły cukru i grupy fosforanowe. Pomiędzy obiema nićmi znajdują się zasady azotowe zawierające atomy wodoru. Dotychczas sądzono, że to wiązania atomów wodoru utrzymują razem obie nici.
      Jednak uczeni z Chalmers wykazali właśnie, że kluczem do utrzymania razem nici jest hydrofobowe wnętrze molekuł zanurzonych w środowisku składającym się głównie z wody. Zatem mamy tutaj hydrofilowe otoczenie i hydrofobowe molekuły odpychające otaczającą je wodę. Gdy hydrofobowe molekuły znajdują się w hydrofilowym środowisku, grupują się razem, by zmniejszyć swoją ekspozycję na wodę.
      Z kolei wiązania wodorowe, które dotychczas postrzegano jako elementy utrzymujące w całości podwójną helisę DNA, wydają się mieć więcej wspólnego z sortowaniem par bazowych, zatem z łączniem się helisy w odpowiedniej kolejności.
      Komórki chcą chronić swoje DNA i nie chcą wystawiać ich na środowisko hydrofobowe, które może zawierać szkodliwe molekuły. Jednocześnie jednak DNA musi się otwierać, by było użyteczne. Sądzimy, że przez większość czasu komórki utrzymują DNA w środowisku wodny, ale gdy chcą coś z DNA zrobić, na przykład je odczytać, skopiować czy naprawić, wystawiają DNA na środowisko hydrofobowe, mówi Bobo Feng, jeden z autorów badań.
      Gdy na przykład dochodzi do reprodukcji, pary bazowe odłączają się i nić DNA się otwiera. Enzymy kopiują obie strony helisy, tworząc nową nić. Gdy dochodzi do naprawy uszkodzonego DNA, uszkodzone części są wystawiane na działanie hydrofobowego środowiska i zastępowane. Środowisko takie tworzone jest przez proteinę będącą katalizatorem zmiany. Zrozumienie tej proteiny może pomóc w opracowaniu wielu leków czy nawet w metodach leczenia nowotworów. U bakterii za naprawę DNA odpowiada proteina RecA. U ludzi z kolei proteina Rad51 naprawia zmutowane DNA, które może prowadzić do rozwoju nowotworu.
      Aby zrozumieć nowotwory, musimy zrozumieć, jak naprawiane jest DNA. Aby z kolei to zrozumieć, musimy zrozumieć samo DNA. Dotychczas go nie rozumieliśmy, gdyż sądziliśmy, że helisa jest utrzymywana przez wiązania atomów wodoru. Teraz wykazaliśmy, że chodzi tutaj o siły hydrofobowe. Wykazaliśmy też, że w środowisku hydrofobowym DNA zachowuje się zupełnie inaczej. To pomoże nam zrozumieć DNA i proces jego naprawy. Nigdy wcześniej nikt nie umieszczał DNA w środowisku hydrofobowym i go tam nie badał, zatem nie jest zaskakujące, że nikt tego wcześniej nie zauważył, dodaje Bobo Feng.
      Szwedzcy uczeni umieścili DNA w hydrofobowym (w znaczeniu bardzo zredukowanej koncentracji wody) roztworze poli(tlenku etylenu) i krok po kroku zmieniali hydrofilowe środowisko DNA w środowisko hydrofobowe. Chcieli w ten sposób sprawdzić, czy istnieje granica, poza którą DNA traci swoją strukturę. Okazało się, że helisa zaczęła się rozwijać na granicy środowiska hydrofilowego i hydrofobowego. Bliższa analiza wykazała, że gdy pary bazowe – wskutek oddziaływania czynników zewnętrznych – oddzielają się od siebie, wnika pomiędzy nie woda. Jako jednak, że wnętrze DNA powinno być suche, obie nici zaczynają przylegać do siebie, wypychając wodę. Problem ten nie istnieje w środowisku hydrofobowym, zatem tam pary bazowe pozostają oddzielone.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W atmosferze planety krążącej wokół czerwonego karła odkryto parę wodną. K2-18 b to skalista superziemia znajdująca się w ekosferze swojej gwiazdy. Najprawdopodobniej panują na niej temperatury podobne do ziemskich, zatem woda może istnieć też na powierzchni planety, co czyni ją jednym  najbardziej obiecujących celów przyszłych badań naukowych.
      To jedyna planeta poza Układem Słonecznym, o której wiemy, że panuje na niej temperatura pozwalająca na istnienie wody w stanie ciekłym, która ma atmosferę i wodę. To – jak dotychczas – najlepszy kandydat, na którym może istnieć życie, mówi główny autor badań, Angelos Tsiaras z University College London.
      Planeta K2-18 b znajduje się w odległości 110 lat świetlnych od Ziemi, w Gwiazdozbiorze Lwa. Krąży ona wokół niewielkiego czerwonego karła o masie zaledwie 1/3 masy Słońca. Jak mówią naukowcy, gwiazda jest zadziwiająco spokojna.
      Planeta okrąża gwiazdę w ciągu 33 ziemskich dni. Znajduje się bowiem 2-krotnie bliżej niej niż Merkury Słońca. Biorąc pod uwagę fakt, że gwiazda ta jest znacznie chłodniejsza niż Słońce, planeta otrzymuje tyle samo promieniowania, co Ziemia. Z naszych obliczeń wynika, że panują na niej temperatury podobne do ziemskich, wyjaśnia Tsiaras.
      Uczeni wyliczyli, że rozpiętość temperatur na K2-18 b wynosi od -73 do 47 stopni Celsjusza. Dla porównania, zarejestrowana rozpiętość temperatur na Ziemi to od -84 do 49 stopni Celsjusza.
      K2-18 b ma średnicę około 2-krotnie większą od średnicy Ziemi i jest od niej około 8-krotnie bardziej masywna. To oznacza, że jest planetą skalistą, a jako, że ma atmosferę z parą wodną oraz odpowiednie temperatury, woda powinna być również na jej powierzchni. Jednak astronomowie nie mogą być tego pewni. Badania prowadzili bowiem za pomocą Teleskopu Hubble'a, który nie może zbyt szczegółowo określać składu atmosfer egzoplanet. Przez to nie mogą być pewni, ile wody znajduje się w atmosferze. Obecnie jej ilość określono na od 0,01 do 50 procent. Aby się tego dokładnie dowiedzieć, będziemy musieli poczekać, aż w przestrzeń kosmiczną trafią teleskopy kolejnej generacji: Teleskop Kosmiczny Jamesa Webba (JWST), który ma zostać wystrzelony w 2021 roku czy Atmospheric Remote-sensing Infrared Exoplanet Large survey (ARIEL). Nad tym drugim pracuje Europejska Agencja Kosmiczna, a teleskop ma rozpocząć pracę w drugiej połowie przyszłej dekady.

      « powrót do artykułu
×
×
  • Create New...