
Im więcej CO2, tym mniej witaminy B w ryżu
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Światowe oceany pochłaniają około 25% antropogenicznej emisji dwutlenku węgla, z czego sam Ocean Południowy pochłania aż 40% – czyli nawet 4 miliardy ton – co czyni go najważniejszym regionem spowalniającym globalne ocieplanie. Modele klimatyczne przewidują, że zmiana klimatu powinna spowodować zmniejszenie zdolności Oceanu Południowego do pochłaniania węgla z atmosfery. Jednak dane obserwacyjne temu przeczą. W ostatnich dekadach takie zjawisko nie zaszło. Léa Olivier i F. Alexander Haumann z Instytutu Alfreda Wegenera wyjaśnili na łamach Nature Climate Change, dlaczego nie zachodzą zjawiska przewidziane przez modele.
Rola, jaką odgrywa Ocean Południowy w spowalnianiu ocieplenia klimatu jest ściśle związana z cyrkulacją oceaniczną w regionie. Zależy od tego, jak wiele wody z głębin wynurzy się na powierzchnię i ponownie zanurzy. W trakcie tego procesu dochodzi do uwolnienia CO2 z wód oceanicznych, pochłonięcia CO2 i jego transportu w głębokie partie oceanu. To, ile dwutlenku węgla pochłonie Ocean Południowy zależy od tego, ile tego gazu wydostanie się wraz z wodą z głębin oceanicznych. Im więcej przetransportuje woda z głębi, tym mniej pochłoną wody powierzchniowe.
Woda wydobywająca się z oceanicznych głębin jest bardzo stara. Nie było jej na powierzchni od setek i tysięcy lat. Przez ten czas akumulowała ona naturalny dwutlenek węgla. Gdy powraca na powierzchnię, uwalnia go do atmosfery. Jednocześnie takie powracające wody zmniejszają zdolność wód powierzchniowych do absorbowania CO2. Modele klimatyczne mówią, że coraz silniejsze wiatry zachodnie, które zyskują na sile z powodu globalnego ocieplenia, będą powodowały, że coraz więcej wody z głębin będzie wydobywało się na powierzchnię. W dłuższym terminie powinno to zmniejszyć zdolność Oceanu Południowego do absorbowania CO2 z atmosfery. Jednak, wbrew modelom, w ostatnich dekadach nie odnotowano, by Ocean Południowy pochłaniał mniej dwutlenku węgla niż wcześniej. Pomimo tego, że siła wiatrów zachodnich rzeczywiście wzrosła.
Głębokie wody oceaniczne na Oceanie Południowym znajdują się poniżej 200 metrów pod powierzchnią. Są bardziej słone, bogatsze w składniki odżywcze i cieplejsze od wód powierzchniowych. Zawierają też dużą ilość CO2, który jest przechowywany w głębokich partiach oceanu od bardzo dawna, pochodzi sprzed epoki przemysłowej. Z kolei wody powierzchniowe są mniej słone, chłodniejsze i zawierają mniej dwutlenku węgla. Dzięki różnicy w gęstości obu warstw wody z głębi nie mogą łatwo wydostać się na powierzchnię.
Na potrzeby badań uczeni wykorzystali dane biogeochemiczne dotyczące właściwości wód Oceanu Południowego, zebrane przez liczne ekspedycje naukowe w latach 1972–2021. Przyjrzeli się długoterminowym anomaliom, zmianom we wzorcach cyrkulacji i właściwościach wody. Brali przy tym pod uwagę wyłącznie te procesy, które powiązane są z mieszaniem się obu warstw wody, a nie – na przykład – procesy biologiczne.
Zauważyli, że od lat 90. XX wieku różnica pomiędzy obiema masami wody się zwiększyła. Wody powierzchniowe stały się mniej słone w wyniku napływu do Oceanu Południowego olbrzymiej ilości słodkiej wody z roztapiających się lodowców, lodu morskiego i zwiększonych opadów. Ta zwiększona różnica we właściwościach obu warstw powoduje, że wody powierzchniowe stanowią jeszcze trudniejszą do pokonania barierę dla wód z głębin. To jednak nie wszystko.
„Odświeżone” przez słodką wodę wody powierzchniowe spowodowały, że nie doszło do osłabienia zdolności Oceanu Południowego do pochłaniania CO2. Sytuacja może jednak ulec zmianie, gdy różnica pomiędzy obiema warstwami wody stanie się mniejsza. Okazuje się, że takie ryzyko istnieje. Z badań Olivier i Haumanna wynika bowiem, że od lat 90. górna granica głębokich warstw wody przybliżyła się do powierzchni o 40 metrów. A im bliżej powierzchni się znajdzie, tym bardziej obie warstwy wody będą podatne na mieszanie przez coraz silniejsze wiatry zachodnie.
Nie można zresztą wykluczyć, że proces ten już się rozpoczął, na co wskazują wyniki badań opublikowane przed 4 miesiącami w PNAS. Jeśli tak, to w najbliższych latach możemy być świadkami procesu utraty przez Ocean Południowy części zdolności do pochłaniania dwutlenku węgla. Potrzebujemy więcej danych, by stwierdzić, czy rzeczywiście dochodzi do uwalniania większej ilości CO2 z głębokich partii oceanu. Szczególnie przydatne będą dane z miesięcy zimowych, gdy ma miejsce mieszanie się wód, mówi profesor Haumann i przypomina, że Instytut Wegenera będzie prowadził tego typu badania w ramach międzynarodowego programu Antarctica InSync, którego celem jest koordynacja badań w Antarktyce i na Oceanie Południowym.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Światowa Organizacja Meteorologiczna (WMO) opublikowała raport na temat gazów cieplarnianych w atmosferze w roku 2024. Nie napawa on optymizmem. Raport rozpoczyna się słowami: poziomy trzech najpowszechniej występujących długotrwałych gazów cieplarnianych, dwutlenku węgla, metanu i tlenku azotu pobiły w 2024 roku rekordy. Pomiędzy rokiem 2023 a 2024 poziom CO2 w niskich warstwach atmosfery zwiększył się o 3,5 ppm, to największy wzrost rok do roku od czasu rozpoczęcia regularnych pomiarów w 1957 roku. Wzrost ten był napędzany emisją CO2 ze źródeł kopalnych, zwiększoną emisją z pożarów oraz zmniejszonym pochłanianiem przez lądy i oceany, co może wskazywać na działanie sprzężenia zwrotnego.
W 2024 roku średnie stężenie CO2 przy powierzchni Ziemi osiągnęło 423,9 ppm. Warto zwrócić uwagę na przyspieszenie tempa wzrostu. W latach 60. XX wieku stężenie dwutlenku węgla wzrastało średnio o 0,8 ppm/rok, natomiast w dekadzie 2011–2020 było to średnio 2,4 ppm/rok. W ciągu ostatnich 10 lat (2014–2024) średnia wyniosła 2,57 ppm.
Ubiegłoroczny wzrost o 3,5 ppm był rekordowy, wyższy niż dotychczasowy rekord 3,3 ppm z 2016 roku i znacznie wyższy niż 2,4 ppm z roku 2023. Co więcej, ten duży wzrost miał miejsce pomimo tego, że antropogeniczna emisja CO2 w roku 2024 utrzymała się praktycznie na tym samym poziomie co w roku 2023.
Od 1960 roku ludzkość wyemitowała do atmosfery około 500 miliardów ton węgla. Z tego około połowa została pochłonięta przez oceany i lądy. Problem jednak w tym, nie nie możemy bez końca liczyć na te źródła pochłaniania węgla. Wraz ze wzrostem temperatury oceany są w stanie pochłonąć coraz mniej CO2, gdyż gaz ten gorzej rozpuszcza się w wodzie o wyższej temperaturze. Wyższe temperatury oznaczają też pojawianie się okresów ekstremalnych susz. Z jednej strony oznacza to częstsze pożary, w wyniku których dochodzi do emisji węgla do atmosfery i zmniejszania pokrywy roślinnej, z drugiej zaś, stres wywołany temperaturami i niedoborami wody również może spowodować zmniejszone pochłanianie węgla przez roślinność. Za przykład niech posłużą niedawne badania australijskich uczonych, którzy zauważyli, że w pierwszej dekadzie obecnego wieku doszło do radykalnej zmiany, w wyniku której wilgotne lasy tropikalne Australii stały się emitentem netto węgla.
Z raportu WMO dowiadujemy się, że w rekordowym ubiegłym roku wzrostu stężenia CO2 w atmosferze ekosystemy lądowe i oceany są prawdopodobnie odpowiedzialne za 1,1 ppm tego wzrostu. Średnia globalna temperatura była najwyższa od 1850 roku i po raz pierwszy była o 1,5 stopnia wyższa niż w epoce przedprzemysłowej. Było to spowodowane zarówno długoterminowym ociepleniem klimatu, jak i pojawieniem się zjawiska El Niño. W wyniku połączenia obu czynników doszło do zmian w rozkładzie regionalnych temperatur i opadów, co wpłynęło na wchłanianie i uwalnianie CO2 przez rośliny oraz liczbę i wielkość pożarów. Cieplejsze oceany wyemitowały też więcej węgla niż zwykle. Jednak główną przyczyną anomalii zarejestrowanej w roku 2024 był zmniejszenie wchłaniania netto węgla przez ekosystemy oraz zwiększenie emisji z pożarów, stwierdzają autorzy raportu.
Naukowcy obawiają się, że ekosystemy morskie i lądowe coraz mniej efektywnie pochłaniają dwutlenek węgla, zatem coraz większa część antropogenicznej emisji pozostaje w atmosferze, przyspieszając globalne ocieplenie.
Usuwanie antropogenicznego CO2 z atmosfery jest uzależnione od wymiany pomiędzy miejscami jego wchłaniania. Wymiana ta trwa w skalach od lat (pochłanianie przez wody powierzchniowe oceanów), po setki tysięcy lat (wietrzenie skał). Spowolnienie wchłaniania CO2 jest dodatkowo potęgowane przez powolne pochłanianie energii cieplnej przez głębiny oceaniczne. W wyniku tego raz wyemitowany dwutlenek węgla pozostaje w atmosferze praktycznie bez końca. Inaczej jest w przypadku metanu, którego czas istnienia w atmosferze wynosi około 9 lat. Gaz ten jest usuwany w wyniku utleniania, czytamy w dokumencie.
W epoce przedprzemysłowej w atmosferze utrzymywała się równowaga pomiędzy emisją a pochłanianiem i poziom dwutlenku węgla wynosił 278,3 ppm. Obecnie przekroczył 420 ppm, co oznacza wzrost o ponad 50%.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Niemieccy badacze znaleźli nowe źródło informacji o stężeniu dwutlenku węgla w atmosferze przed milionami lat. Okazało się, że zapis na ten temat znajduje się w... skamieniałych zębach dinozaurów. Uczeni z Uniwersytetów w Moguncji, Göttingen i Bochum, na podstawie analizy izotopów tlenu w szkliwie zębów dinozaurów stwierdzili, że stężenie CO2 w atmosferze w mezozoiku (252–66 milionów lat temu), było znacznie wyższe niż obecnie. Badania były możliwe dzięki wykorzystaniu innowacyjnej metody, która pozwoliła na określenie względnego stosunku wszystkich trzech naturalnych izotopów tlenu.
Badania wykazały, że produkcja pierwotna – czyli w tym przypadku szybkość gromadzenia energii promieniowania słonecznego, która jest podczas fotosyntezy przekształcana w energię wiązań chemicznych w tkankach roślinnych – była dwukrotnie większa niż obecnie.
Naukowcy przeanalizowali zęby dinozaurów z Ameryki Północnej, Afryki i Europy pochodzące o czasów od późnej jury po późną kredę. Szkliwo zębowe to jeden z najbardziej stabilnych materiałów biologicznych. Zawiera ono trzy izotopy tlenu, które do organizmu dinozaurów dostawały się w czasie oddychania. Względny stosunek tych izotopów w powietrzu zależy od zmian w poziomie atmosferycznego dwutlenku węgla i intensywności fotosyntezy. To oznacza, że zęby dinozaurów mogą zawierać dane o klimacie i szacie roślinnej.
Z badań wynika, że pod koniec jury, około 150 milionów lat temu, stężenie CO2 w atmosferze było czterokrotnie większe niż w epoce przedprzemysłowej. W późnej kredzie – 73–66 milionów lat temu – było zaś 3-krotnie wyższe. W czasach przedprzemysłowych stężenie CO2 w atmosferze wynosiło 280 ppm. Obecnie jest ono o ponad 50% wyższe. W 2024 było to 424 ppm. Wartość ta szybko rośnie. Jeszcze w 2017 roku stężenie wynosiło 406 ppm.
Analizy wykazały też, że w niezwykły stosunek izotopów tlenu w niektórych zębach gatunków Tyrannosaurus rex i Kaatedocus siberi. To najprawdopodobniej dowód na nagłe wzrosty stężenia CO2, spowodowane na przykład potężną aktywnością wulkaniczną, jak ta, która utworzyła trapy Dekanu.
Uzyskane wyniki to przełom w paleoklimatologii. Dotychczas bowiem w czasie podobnych badań używa się próbek węglanów z gleby i wykorzystuje proxy morskie, czyli niebezpośrednich wskaźników ze środowiska morskiego. Obie te metody obarczone są jednak pewnym marginesem niepewności. Użycie szkliwa zębów dinozaurów to pierwsza metoda badań tego typu opierająca się na kręgowcach lądowych. To całkowicie nowy sposób wglądu w przeszłość Ziemi. Teraz możemy użyć sfosylizowanego szkliwa do badania składu atmosfery oraz produktywności roślin morskich i lądowych. To kluczowe elementy zrozumienia długoterminowej dynamiki klimatu, mówi doktor Dingsu Feng z Wydziału Geochemii i Geologii Izotopowej na Uniwersytecie w Göttingen.
Informacje o produkcji pierwotnej to ważne dane na temat lądowych i morskich sieci troficznych. Dane takie trudno jest zdobyć, a są one bardzo ważne, gdyż to dostępna biomasa roślinna decyduje o liczbie zwierząt, ich gatunków oraz długości łańcucha pokarmowego, wyjaśnia profesor Eva M. Griebeler z Uniwersytetu w Moguncji.
Badania zostały omówione na łamach PNAS.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W Szwajcarii powstaje „żywy” materiał, który w sposób aktywny pobiera dwutlenek węgla z atmosfery. Wewnątrz materiału znajdują się cyjanobakterie, które wiążą CO2 na dwa różne sposoby. Nad niezwykłym projektem, którego celem jest połączenie konwencjonalnych materiałów z bakteriami, grzybami czy glonami pracują naukowcy z Politechniki Federalnej w Zurychu. Ich celem jest stworzenie materiałów, które dzięki metabolizmowi mikroorganizmów nabierają nowych pożądanych właściwości. Na przykład usuwają dwutlenek węgla z powietrza.
Zespół pracujący pod kierunkiem profesora Marka Tibbitta z katedry Inżynierii Makromolekularnej stworzył właśnie żel zawierający cyjanobakterie. Można go kształtować za pomocą drukarki 3D. Niezwykłe jest to, że żel – mimo że jest miękki – ma być materiałem budowlanym. A jedyne, czego potrzebuje, by się nim stać, to światło słoneczne i słona woda zawierająca proste do uzyskania składniki odżywcze. Oraz dwutlenek węgla z atmosfery. Jakby tego było mało, materiał absorbuje więcej CO2 niż wiążą zawarte w nim cyjanobakterie. Dzieje się tak, gdyż przechowuje on atmosferyczny węgiel nie tylko w postaci biomasy, ale również w postaci mineralnej.
Cyjanobakterie to jedne z najstarszych form życia na Ziemi. Przeprowadzają bardzo efektywną fotosyntezę i nie potrzebują wiele światła, by z CO2 i wody wytwarzać biomasę. Jednocześnie, w wyniku przeprowadzanej przez nie fotosyntezy, dochodzi do zmiany środowiska chemicznego wokół komórki i tworzenia się węglanów. Węglany deponowane są wewnątrz żelu, wzmacniają go, a jednocześnie same pochłaniają atmosferyczny dwutlenek węgla, przechowując go w bardziej stabilnej formie niż bakterie. Badania wykazały, że taki żel pochłania węgiel przez 400 dni i przechowuje 26 miligramów CO2 na każdy gram. To znacząco więcej niż wiele innych materiałów.
Twórcy żelu chcą w przyszłości zbadać, czy sprawdzi się on na przykład jako powłoka, którą można będzie pokrywać i zamieniać je w miejsca pochłaniające dwutlenek węgla z atmosfery.
Źródło: Dual carbon sequestration with photosynthetic living materials, https://www.nature.com/articles/s41467-025-58761-y
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy pracujący nad Global Carbon Project, informują, że w bieżącym roku emisja CO2 ze spalania paliw kopalnych osiągnie rekordowo wysoki poziom. Z szacunków wynika, że do końca bieżącego roku ludzkość, spalając paliwa kopalne, wyemituje do atmosfery 37,4 miliardów ton dwutlenku węgla. To o 0,8% więcej niż w roku ubiegłym. Do tego należy dodać emisję związaną ze zmianami w użytkowaniu gruntów (np. wycinkę lasów), z której emisja wyniesie 4,2 miliarda ton. W sumie więc tegoroczna antropogeniczna emisja dwutlenku węgla osiągnie 41,6 miliarda ton, czyli o miliard ton więcej, niż w roku ubiegłym.
W ciągu ostatniej dekady emisja ze spalania paliw kopalnych rosła, a z użytkowania gruntów zmalała aż o 20%, dzięki czemu średni poziom emisji utrzymywał się mniej więcej na tym samym poziomie. W bieżącym roku jest jednak inaczej. Rośnie zarówno emisja z paliw, jak i ze zmian użytkowania gruntu. W tym drugim przypadku jest to w znacznej mierze spowodowane przez susze, które pogarszają emisję ze zdegradowanych przez człowieka lasów.
Pomimo rosnącej emisji autorzy raportu wykazują umiarkowany optymizm. Mówią, że po raz pierwszy widać wyraźnie, iż zmniejszanie wycinki lasów w ostatnich dekadach przynosi efekty, a coraz większy udział energii odnawialnej zarówno w energetyce, jak i transporcie, pokazuje, że szczyt zużycia paliw kopalnych jest coraz bliżej. Wciąż jednak nie wiadomo, jak odległy jest moment, gdy użycie paliw kopalnych zacznie spadać.
Z przeprowadzonych szacunków wynika, że w roku bieżącym – w porównaniu z rokiem ubiegłym – emisja CO2 z węgla wzrośnie o 0,2%, z ropy naftowej o 0,9%, a z gazu o 2,4%. Udział tych paliw w emisji będzie wynosił, odpowiednio 41%, 32% i 21%. Uczeni przewidują, że emisja Chin, które odpowiadają obecnie za 32% emisji światowej, wzrośnie o 0,2%, chociaż możliwy jest też niewielki spadek. USA (13% globalnej emisji) zmniejszą swoją emisję o 0,6%. Indie (8% emisji CO2), wyemitują w bieżącym roku o 4,6% więcej niż w ubiegłym, a emisja UE (7%) zmniejszy się o 3,8%. Cała reszta świata wyemituje o 1,1% dwutlenku węgla więcej, niż w roku ubiegłym.
Szacunki mówią też, że lotnictwo i transport morski, które emitują 3% całości CO2, a z których emisje nie są przypisywane do żadnego kraju, wyemitują o 7,8% więcej, ale wciąż będzie to o 3,5% mniej niż z czasów sprzed pandemii. Średni poziom CO2 w atmosferze w 2024 roku wyniesie 422,5 części na milion. To o 2,8 części na milion więcej niż w roku ubiegłym i o 52% więcej, niż w okresie przedprzemysłowym.
Naukowcy zauważają też, że zjawisko El Niño doprowadziło do zmniejszenia absorpcji atmosferycznego CO2 przez ekosystemy w roku 2023, jednak sytuacja wkrótce powinna wrócić do normy. Lądy i oceany wciąż pochłaniają około połowy CO2 emitowanego przez człowieka.
Uczeni z Global Carbon Budget uważają, że obecnie istnieje 50% ryzyko, że już za 6 lat każdy kolejny rok będzie o co najmniej 1,5 stopnia Celsjusza cieplejszy niż w okresie preindustrialnym. Stwierdzają również, że niemal skończył się czas, by powstrzymać globalne ocieplenie na poziomie poniżej 1,5 stopnia Celsjusza.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.