Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Dodatkowy miliard hektarów lasu da ludzkości czas na wprowadzenie zmian

Rekomendowane odpowiedzi

Pojawiają się coraz większe obawy o to, że ludzkość może doprowadzić do nieodwracalnych katastrofalnych zmian klimatycznych. Wiele wskazuje na to, że potrzebne są radykalne działania, na ich przeprowadzenie zostało niewiele czasu, a nikt nie kwapi się, by działania takie rozpocząć. Jeśli nic się nie zmieni, to do roku 2030 średnia temperatura na Ziemi może być o 1,5 stopnia Celsjusza wyższa niż w epoce przedprzemysłowej. Jednak, jak dowiadujemy się z najnowszego raportu IPCC, jeśli posadzimy dodatkowo 1 miliard hektarów lasu, to wspomniany wzrost temperatury o 1,5 stopnia Celsjusza przeciągniemy do roku 2050. Zyskamy więc dodatkowe 2 dekady na wprowadzenie zmian.

Miliard hektarów to 10 milionów kilometrów kwadratowych czyli nieco więcej niż powierzchnia USA. Ekolodzy Jean-Francois Bastin i Tom Crowther ze Szwajcarskiego Federalnego Instytutu Technologii w Zurichu postanowili sprawdzić, czy obecnie na Ziemi da się zasadzić tyle dodatkowych drzew i gdzie można by je zasadzić.

Naukowcy przeanalizowali niemal 80 000 zdjęć satelitarnych, badając obecną pokrywę leśną naszej planety. Następnie skategoryzowali poszczególne obszary Ziemi biorąc pod uwagę 10 cech charakterystycznych gleby i klimatu. Dzięki temu zidentyfikowali obszary, na których może rosnąć konkretny typ lasu. Od powierzchni tych obszarów odjęli powierzchnię zajmowaną obecnie przez lasy, miasta i pola uprawne. W ten sposób obliczyli, ile lasu można zasadzić obecnie na Ziemi.
Okazało się, że na Ziemi jest obecnie miejsce na 900 milionów hektarów lasu, który można zasadzić nie zajmując przy tym pól uprawnych i terenów miejskich. Ten dodatkowy las w ciągu kilku dekad usunąłby z atmosfery 205 milionów ton węgla, czyli sześciokrotnie więcej niż ludzkość wyemitowała w roku 2018.

To pokazuje rolę, jaką odgrywają lasy, mówi Greg Asner z Arizona State University. Jeśli chcemy osiągnąć cele, jakie ludzkość sobie wyznaczyła, musimy zaprzęgnąć las do pomocy. Warto tutaj zauważyć, że rola lasów nie ogranicza się tylko do usuwania węgla z atmosfery. Lasy m.in. zwiększają bioróżnorodność, poprawiają jakość wody, zapobiegają erozji gleby.

Pozostaje też pytanie, ile kosztowałoby zalesianie Ziemi na masową skalę. Crowther szacuje koszt posadzenia jednego drzewa na około 30 centów, a to oznacza, że koszt całego przedsięwzięcia wyniósłby około 300 miliardów USD.

Naukowcy przyznają, że szacunki dotyczące ilości węgla pochłanianego przez przyszłe lasy nie są zbyt precyzyjne. Jednak wkrótce się to zmieni. Pod koniec ubiegłego roku NASA wysłała na Międzynarodową Stację Kosmiczną urządzenie GEDI (Global Ecosystem Dynamics Investigation), które za pomocą laserów tworzy precyzyjną trójwymiarową mapę lasów, od ściółki po korony drzew. Dane z GEDI pozwolą uczonym znacznie bardziej precyzyjnie oceniać ilość węgla pochłanianego przez roślinność.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Sadźmy algi, one pochłaniają najwięcej CO2  ... a drzewa sadźmy na wielkich platformach nad miastami.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Po raz pierwszy przeprowadzono trójwymiarowe obserwacje atmosfery planety pozasłonecznej. Dokonał tego międzynarodowy zespół złożony z naukowców ze Szwajcarii, Francji, Hiszpanii, Chile, Kanady, Szwecji, USA i Portugalii wykorzystując wszystkie cztery duże teleskopy tworzące Very Large Telescope (VLT) Europejskiego Obserwatorium Południowego. Celem badań był ultragorący jowisz WASP-121b, położony 900 lat świetlnych od Ziemi w Gwiazdozbiorze Rufy. Znajduje się tak blisko gwiazdy, że obiega ją w 30 godzin.
      Niezwykłą atmosferę WASP-121b opisywaliśmy wcześniej w tekście Potężny wiatr i deszcz z kamieni szlachetnych, pierwszy dokładny obraz nocnej strony egzoplanety. Teraz udało się ją zbadać w 3D.
      Ultragorące jowisze, ekstremalna klasa planet nieobecna w Układzie Słonecznym, dają wyjątkowy wgląd w procesy atmosferyczne. Ekstremalne różnice temperatur pomiędzy stroną dzienną a nocną każą zadać sobie fundamentalne pytanie: jak jest tam rozłożona energia? Aby na nie odpowiedzieć, musimy obserwować trójwymiarową strukturę ich atmosfer, szczególnie zaś ich cyrkulację pionową, która może posłużyć jako test zaawansowanych Globalnych Modeli Cyrkulacji, stwierdzili autorzy badań.
      Naukowcy zajrzeli w głąb atmosfery planety i zauważyli wiatry wiejące w różnych jej warstwach. Stworzyli dzięki temu trójwymiarową najbardziej szczegółową mapę atmosfery egzoplanety.
      To, co zobaczyliśmy, zaskoczyło nas. Prąd strumieniowy niesie materiał wokół równika planety, a w niższych warstwach atmosfery ma miejsce inny przepływ, który przemieszcza gazy ze strony gorącej na zimną. Nigdy wcześniej, na żadnej planecie, nie obserwowaliśmy takiego klimatu, mówi Julia V. Seidel z francuskiego Observatoire de la Côte d’Azur. Zaobserwowany prąd strumieniowy rozciąga się na połowę planety, znacząco przyspieszając i gwałtownie skłębiając wysokie partie atmosfery, gdy przekracza gorącą stronę planety. W porównaniu z nim, nawet najpotężniejsze huragany Układu Słonecznego wydają się spokojnymi podmuchami, dodaje Seidel.
      VLT pozwolił nam na jednoczesne śledzenie trzech różnych warstw atmosfery, cieszy się Leonardo A. dos Santos ze Space Telescope Science Institute w USA. Uczeni śledzili przemieszczanie się w atmosferze żelaza, sodu i wodoru, dzięki czemu mogli obserwować dolną, średnią i górną warstwę. Tego typu obserwacje trudno jest wykonać za pomocą teleskopów w przestrzeni kosmicznej, co pokazuje, jak ważne są naziemne badania egzoplanet, dodaje uczony.
      Niespodzianką była obecność tytanu, który zauważono pod obserwowanym prądem strumieniowym. Wcześniejsze badania nie wykazały obecności tego pierwiastka. Prawdopodobnie dlatego, że jest ukryty w głębokich warstwach atmosfery.
      Niezwykłym osiągnięciem jest możliwość tak szczegółowego badania atmosfery planet położonych tak daleko od Ziemi, ich składu chemicznego i wzorców pogodowych. Jednak do zbadania egzoplanet wielkości Ziemi konieczne będą większe teleskopy. Jednym z nich może być Extremely Large Telescope (ELT), budowany przez Europejskie Obserwatorium Południowe na pustyni Atacama.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z University of Toronto bezpośrednio powiązali spadek populacji niedźwiedzi polarnych żyjących w zachodniej części Zatoki Hudsona ze zmniejszającą się wskutek globalnego ocieplenia powierzchnią lodu morskiego. Opracowany model wykazał, że liczba niedźwiedzi się zmniejsza, gdyż zwierzęta nie są w stanie zapewnić sobie wystarczającej ilości energii, gdyż krócej mogą polować na foki. Utrata lodu morskiego oznacza, że niedźwiedzie coraz mniej czasu w roku spędzają na polowaniach, a coraz więcej poszczą na lądzie, mówi główna autorka badań, Louise Archer.
      Skrócenie sezonu polowań negatywnie wpływa na równowagę energetyczną zwierząt, co prowadzi do zmniejszenia reprodukcji, spadku przeżywalności młodych i spadku liczebności całej populacji. Wykorzystany model badał ilość energii, jaką niedźwiedzie pozyskują obecnie polując na foki i ilość energii, jaką potrzebują, by rosnąć i się rozmnażać. Unikatową cechą tego modelu jest jego zdolność do śledzenia pełnego cyklu życiowego poszczególnych zwierząt. Wyniki uzyskane z modelu porównano z danymi dotyczącymi niedźwiedzi z zachodnich regionów Zatoki Hudsona, zgromadzonymi w latach 1979–2021. W ciągu tych 42 lat populacja niedźwiedzi spadła o niemal 50%. Zmniejszyła się też masa poszczególnych osobników. W ciągu 37 lat waga przeciętnej dorosłej samicy zmniejszyła się o 39 kilogramów, a przeciętnego 1-rocznego zwierzęcia o 26 kg.
      Okazało się, że model trafnie opisał, że takie procesy miały miejsce, co oznacza, że będzie też dobrze przewidywał to, co stanie się w przyszłości. Co więcej jednak, wykazał, że istnienie związek pomiędzy zmniejszaniem się zasięgu lodu morskiego, a spadkiem populacji niedźwiedzi.
      Im krócej niedźwiedzie mogą polować, tym mniej mleka wytwarza samica, co jest niebezpieczne dla młodych. Małe niedźwiadki zginą, jeśli przed pierwszym w życiu sezonem postu nie osiągną odpowiedniej masy ciała. Samice mają też mniej młodych – tutaj zauważono spadek o 11% w czasie 40 lat – a potomstwo pozostaje z nimi na dłużej, gdyż później zyskuje zdolność do samodzielnego przeżycia. To bardzo proste. Przeżywalność młodych ma bezpośrednie przełożenie na przeżycie populacji, dodaje Archer.
      Zachodnia część Zatoki Hudsona od dawna uważana jest za region, w którym wcześnie pojawiają się zjawiska dotykające całej światowej populacji niedźwiedzi polarnych. Arktyka ociepla się 4-krotnie szybciej niż reszta globu, więc podobne problemy czekają inne populacje niedźwiedzi. To jedna z najbardziej na południe wysuniętych populacji i jest monitorowana od dawna, więc mamy bardzo dobre dane na jej temat, stwierdza profesor Péter Molnár, który specjalizuje się w badaniu wpływu globalnego ocieplenia na duże ssaki. Mamy bardzo solidne podstawy, by wierzyć, że to, co dzieje się z niedźwiedziami polarnymi tutaj, będzie działo się z tym gatunkiem w innych regionach. Tan model opisuje przyszłość niedźwiedzi, dodaje uczony.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Węgiel i inne pierwiastki nie dryfują bezwładnie w przestrzeni kosmicznej, zauważyli naukowcy z USA i Kanady. Okazuje się, że w aktywnych galaktykach – takich jak Droga Mleczna – w których wciąż powstają nowe gwiazdy, pierwiastki są transportowane w formie wielkich strumieni. Krążą w galaktyce, wychodzą poza nią i wracają, zanim w wyniku oddziaływania grawitacji i innych sił nie utworzą planet, gwiazd, księżyców czy asteroid. To zaś oznacza, że pierwiastki w naszych organizmach, zanim do nich trafiły, mogły spędzić sporo czasu w przestrzeni międzygalaktycznej, wchodząc w skład ośrodka okołogalaktycznego (CGM).
      Pomyślmy o ośrodku okołogalaktycznym jak o wielkiej stacji kolejowej. Bez przerwy wypycha materiał na zewnątrz i go z powrotem zasysa. Ciężkie pierwiastki, które powstały w gwiazdach, są wypychane z ich galaktyk macierzystych w wyniku eksplozji supernowych i trafiają do przestrzeni międzygalaktycznej, a następnie są z powrotem wciągane do galaktyki, gdzie biorą udział w tworzeniu gwiazd i planet, mówi doktorantka Samantha Garza z University of Washington, jedna z autorek pracy opublikowanej na łamach Astrophysical Journal Letters.
      Naukowcy zauważają, że odkrycie tego procesu ma olbrzymie znaczenie dla naszego zrozumienia procesu ewolucji galaktyk. Jego implikacje dla ewolucji oraz natury dostępnych rezerwuarów węgla są ekscytujące. Ten sam węgiel, który tworzy nasze ciała, prawdopodobnie spędził dużo czasu poza galaktyką, mówi profesor Jessica Werk.
      W 2011 roku po raz pierwszy potwierdzono hipotezę, że aktywne galaktyki są otoczone przez ośrodek okołogalatyczny, olbrzymią chmurę materiału zawierającą gorące gazy. Teraz Garza, Werk i ich współpracownicy odkryli, że w ośrodku tym krążą również pierwiastki powstające w niższych temperaturach, takie jak węgiel. Możemy potwierdzić, że ośrodek okołogalaktyczny działa jak gigantyczny rezerwuar zarówno węgla jak i tlenu. I, przynajmniej w odniesieniu do galaktyk tworzących gwiazdy, uważamy, że materiał ten wraca do galaktyki w procesie recyklingu, stwierdza Garza.
      Jedna z postawionych przez naukowców hipotez mówi, że to spowolnienie lub zaprzestanie tego recyklingu pomiędzy galaktyką a ośrodkiem okołogalaktycznym jest odpowiedzialne za przerwanie procesu tworzenia się nowych gwiazd.
      Badacze wykorzystali instrument Cosmic Origin Spectrograph, który znajduje się na Teleskopie Hubble'a, do obserwacji, w jaki sposób ośrodek okołogalaktyczny 11 galaktyk tworzących gwiazdy wpływa na światło z 9 odległych kwazarów. W ten sposób odkryli, że część tego światła je pochłaniana przez węgiel znajdujący się w medium. I że tego węgla jest dużo. Okazało się również, że węgiel ten można wykryć w odległości nawet 400 tysięcy lat świetlnych od macierzystej galaktyki.
      Teraz celem naukowców jest opisanie innych pierwiastków wchodzących w skład ośrodka okołogalaktycznego, określenie różnic pomiędzy składem ośrodka wokół poszczególnych galaktyk i porównanie tego składu pomiędzy galaktykami, w których wciąż powstają gwiazdy, a tymi, w którym proces formowania gwiazd w dużej mierze się zatrzymał.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Troje naukowców – Elizabeth A Barnes z Colorado State University, Noah S Diffenbaugh z Uniwersytetu Stanforda oraz Sonia I Seneviratne z EHT Zurich – zebrało dane z 10 modeli klimatycznych i przeanalizowało je za pomocą algorytmów sztucznej inteligencji. Na łamach Environmental Research Letters poinformowali, że z tak przeprowadzonych badań wynika, iż globalne temperatury będą rosły szybciej niż zakładano, a jeszcze za naszego życia niektóre regiony doświadczą średniego wzrostu temperatury przekraczającego 3 stopnie Celsjusza.
      Autorzy badań stwierdzili, że w 34 ze zdefiniowanych przez IPCC 43 regionów lądowych Ziemi średni wzrost temperatury przekroczy 1,5 stopnia Celsjusza do roku 2040. W 31 z tych 34 regionów należy spodziewać się wzrostu o 2 stopnie do roku 2040. Natomiast do roku 2060 w 26 regionach średnia temperatura wzrośnie o ponad 3 stopnie.
      Regionami narażonymi na szybszy niż przeciętny wzrost temperatur są południowa Azja, region Morza Śródziemnego, Europa Środkowa i niektóre części Afryki Subsaharyjskiej.
      Profesor Diffenbaugh zauważył, że ważne jest, by nie skupiać się tylko na temperaturach globalnych, ale zwracać uwagę na temperatury lokalne i regionalne. Badając, jak rośnie temperatura w poszczególnych regionach, będziemy mogli określić, kiedy i jakie skutki będą odczuwalne dla społeczności i ekosystemów tam żyjących. Problem w tym, że regionalne zmiany klimatyczne są trudniejsze do przewidzenia. Dzieje się tak dlatego, że zjawiska klimatyczne są bardziej chaotyczne w mniejszej skali oraz dlatego, że trudno powiedzieć, jak dany obszar będzie reagował na ocieplenie w skali całej planety.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Punktem wyjścia dla szacowania poziomu antropogenicznego ocieplenia jest zwykle rok 1850, kiedy na wystarczająco dużą skalę prowadzono wiarygodne pomiary temperatury. Jednak w roku 1850 rewolucja przemysłowa trwała od dawna, więc przyjmując ten rok jako podstawę dla pomiarów, trudno jest mówić o wpływie człowieka na temperatury na Ziemi od czasów preindustrialnych. Andrew Jarvis z Lancaster University i Piers Forster z University of Leeds, wykorzystali rdzenie lodowe z Antarktyki do opracowania nowej osi referencyjnej temperatur w czasach przedprzemysłowych.
      Uczeni przeanalizowali bąbelki powietrza zamknięte w rdzeniach lodowych i w ten sposób określili stężenie dwutlenku węgla w latach 13–1700. Następnie, zakładając liniową zależność pomiędzy koncentracją CO2 a temperaturami, obliczyli średnie temperatury panujące na Ziemi.
      Z pracy opublikowanej na łamach Nature Geoscience dowiadujemy się, że od okresu przed 1700 roku do roku 2023 ludzie podnieśli średnią temperaturę na planecie o 1,49 (±0,11) stopnia Celsjusza. Dodatkową zaletą wykorzystanej metody jest niezależna weryfikacja obecnych szacunków. Z badań Jarvisa i Forstera wynika, że od roku 1850 wzrost temperatury wyniósł 1,31 stopnia Celsjusza. Dokładnie zgadza się to z dotychczasowymi ustaleniami, ale badania z rdzeni lodowych są obarczone mniejszym marginesem błędu.
      Niektórzy eksperci uważają, że nowa metoda, chociaż sprawdza się teraz, może nie być przydatna w przyszłości. Nie wiemy bowiem, czy w nadchodzących dekadach liniowa zależność pomiędzy stężeniem dwutlenku węgla a temperaturą się utrzyma. Ich metoda bazuje na korelacji stężenia CO2 z antropogenicznym ociepleniem klimatu. Ta widoczna w przeszłości silna korelacja może być czystym przypadkiem i, w zależności od tego jak będą się układały proporcje CO2 i innych czynników w przyszłości, może się ona nie utrzymać, stwierdza Joeri Rogelj z Imperial College London.
      Richard Betts z Met Office chwali nową metodę, zauważa, że może dostarczać ona lepszych danych na temat przeszłości, ale nie widzi potrzeby zmiany punktu odniesienia dla badań nad ociepleniem klimatu.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...