Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

W Wielkim Zderzaczu Hadronów (LHC) mogą powstawać niewykryte dotychczas ciężkie cząstki
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
W eksperymencie ATLAS potwierdzono niezwykle interesujące wyniki analiz przeprowadzonych w CMS. Otóż kolejne analizy wskazują, że w Wielkim Zderzaczu Hadronów w wyniku zderzeń protonów powstaje toponium. To mezon utworzony przez – najbardziej masywną cząstkę elementarną i najkrócej istniejący z kwarków – kwark t (wysoki) i antykwark t znajdujące się w stanie quasi-związanym.
Podczas kolizji wysokoenergetycznych protonów w Wielkim Zderzaczu Hadronów standardowo powstają pary kwarków t i ich antykwarków. Badania ich przekroju czynnego jest ważnym elementem testowania Modelu Standardowego i sposobem na poszukiwanie nowych nieznanych cząstek, których Model nie opisuje.
Gdy naukowcy z CMS analizowali w ubiegłym roku dane z lat 2016–2018 dotyczące produkcji par kwark t - antykwark t, zauważyli coś niezwykłego. Ich uwagę zwrócił nadmiar tych par, który może wskazywać na istnienie nieznanej cząstki. Jednak najbardziej intrygujący był fakt, że nadmiar ten pojawił się przy energiach stanowiących dolną granicę zakresu poszukiwań. Wysunęli wówczas hipotezę, że nadmiar ten pochodzi od kwarków wysokich i antykwarków wysokich tworzących stan quasi-związany, zwany toponium.
Kwark wysoki jest samotnikiem. Jako jedyny nie tworzy hadronów. Kwarki u (górny), d (dolny) i s (dziwny) tworzą wszystkie powszechnie występujące hadrony, a kwarki c (powabny) i b (piękny) tworzą rzadkie i krótkotrwałe hadrony rejestrowane w akceleratorach. Kwark t ma tak dużą masę i istnieje tak krótko, że rozpada się, zanim zdąży utworzyć jakikolwiek stan związany. Jednak mechanika kwantowa przewiduje pojawienie się szczególnych okoliczności, w których para kwark t i antykwark t istnieje na dyle długo, że mogą wymienić gluony, tworząc toponium.
Gdy CMS ogłaszał przed kilkoma miesiącami odkrycie, koordynator prac, Andreas Meyer mówił, że uzyskany przez nas przekrój czynny (prawdopodobieństwo) dla naszej uproszczonej hipotezy wynosi 8,8 pb (pikobarnów) ± 15%. Można powiedzieć, że to znacząco powyżej 5 sigma [5 sigma to wartość odchyleń standardowych, powyżej której można ogłosić odkrycie - red.].
Teraz naukowcy z ATLAS poinformowali o wynikach pełnej analizy danych z kampanii RUN-2 prowadzonej w latach 2015–2018. Zauważyli w nich to samo zjawisko, co wcześniej ich koledzy z CMS. Przekrój czynny określili na 9,0 pb ± 15%, co w wysokim stopniu zgadza się z wcześniejszymi danymi.
O ile jednak nie ma wątpliwości, co do istnienia obserwowanych danych, ich interpretacja nastręcza pewne trudności. Istnienie toponium nie jest bowiem jedynym możliwym wyjaśnieniem. Nie można bowiem wykluczyć, że dane wskazują na istnienie cząstki o masie dwukrotnie większej niż masa kwarka t, która powstaje w wyniku zderzeń gluonów i rozpada się na parę kwark t - antykwark t. Dokładna interpretacja danych będzie zależała od możliwości precyzyjnego modelowania interakcji kwarków i gluonów w złożonych środowiskach zderzeń protonów.
Jeśli jednak uda się potwierdzić istnienie toponium, będzie to kolejne poznane kwarkonium, czyli stan utworzony przez kwarka i jego antykwark. Obecnie znamy czarmonium – to kwark powabny (charm) i jego antykwark – oraz bottomonium, czyli kwark spodni (bottom) i antykwark. Czarmonium zostało odkryte w SLAC w 1974 roku, a bottomium znaleziono trzy lata później w Fermilabie.
Źródło: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2025-008/
« powrót do artykułu -
przez KopalniaWiedzy.pl
Astronomowie zobrazowali największą znaną chmurę energetycznych cząstek otaczającą gromadę galaktyk. Chmura ma średnicę niemal 20 milionów lat świetlnych, a jej istnienie każe zadać sobie pytanie o mechanizmy, które stoją za nadawanie energii cząstkom. Obowiązujące teorie mówią, że cząstki są napędzane przez pobliskie galaktyki. Tymczasem badania nad niezwykłą chmurą sugerują, że cały region zostaje naenergetyzowany przez gigantyczne fale uderzeniowe i turbulencje gazu otaczającego galaktyki.
Po raz pierwszy odkryta w 2011 roku gromada PLCK G287.0+32.9 znajduje się w odległości 5 miliardów lat świetlnych od Ziemi. Wcześniej zauważono tam dwa jasne obszary utworzone przez fale uderzeniowe, które podświetliły krawędzie gromady. Wówczas jednak nie zauważono słabej emisji w paśmie radiowym, która wypełnia przestrzeń pomiędzy rozbłyskami. Nowe obrazy uzyskane za pomocą radioteleskopów pokazały, że cała gromada otoczona jest chmurą cząstek.
Spodziewaliśmy się, że zobaczymy dwa reliktowe jasne miejsca na krawędziach gromady. Zgadzało by się to z poprzednimi obserwacjami. Tymczasem okazał się, że cała gromada otoczona jest emisją w paśmie radiowym. Nigdy wcześniej nie obserwowano tak wielkiej chmury wysokoenergetycznych cząstek, mówi doktor Kamlesh Rajpurohit z Center for Astrophysics Harvard & Smithsonian. Dotychczasowy rekordzista, Abell 2255, ma średnicę 16,3 miliona lat świetlnych.
Wewnątrz chmury cząstek zidentyfikowano halo radiowe o średnicy 11,4 miliona lat świetlnych. To pierwsze tak wielkie halo w paśmie 2,4 GHz. Badania dostarczyły silnych dowodów na istnienie elektronów pochodzących z promieniowania kosmicznego oraz pól magnetycznych rozciągających się aż na krawędzie gromady. Nie jest jednak jasne, jak elektrony są przyspieszane na tak dużych przestrzeniach.
Bardzo duże halo radiowe obserwuje się zwykle w niższych częstotliwościach, gdyż elektrony generujące teki sygnał tracą energię, są stare i ochłodziły się z czasem. Tutaj zaś widzimy gigantyczne halo emisji radiowej wypełniające całą gromadę. To sugeruje, że coś przyspiesza lub ponownie przyspiesza elektrony, ale nie jest to nic, o czym wiemy, że stoi za takim procesem. Sądzimy, że odpowiedzialne mogą być gigantyczne fale uderzeniowe lub turbulencje, ale potrzebujemy więcej modeli teoretycznych, by znaleźć odpowiedź, dodaje Rajpurohit.
Źródło: Radial Profiles of Radio Halos in Massive Galaxy Clusters: Diffuse Giants Over 2 Mpc, https://ui.adsabs.harvard.edu/abs/2025arXiv250505415R/abstract
« powrót do artykułu -
przez KopalniaWiedzy.pl
W Wielkim Zderzaczu Hadronów wykonano pierwsze dedykowane pomiary masy bozonu Z. Naukowcy wykorzystali przy tym dane ze zderzeń protonów, które były przeprowadzane w eksperymencie LHCb podczas drugiej kampanii naukowej w 2016 roku. Przeprowadzone w CERN-ie badania to jednocześnie duży postęp w precyzji pomiarów LHC. Pokazuje bowiem, że z tak złożonego środowiska, jakie pojawia się w wyniku zderzeń wysokoenergetycznych protonów, można wyłowić niezwykle precyzyjne dane dotyczące poszczególnych cząstek.
Bozon Z to masywna elektrycznie obojętna cząstka, która pośredniczy w oddziaływaniach słabych, jednych z czterech podstawowych oddziaływań natury. Została ona odkryta w CERN-ie ponad 40 lat temu i odegrała ważną rolę w potwierdzeniu prawdziwości Modelu Standardowego. Jej precyzyjne pomiary, podobnie jak dokładne dane na temat wszystkich cząstek elementarnych, pozwalają nam lepiej poznać fizykę oraz poszukać zjawisk, które mogą wykraczać poza obowiązujące modele.
Na podstawie rozpadów 174 000 bozonów Z zarejestrowanych w LHCb stwierdzono obecnie, że masa spoczynkowa tej cząstki wynosi 91 184,2 megaelektronowoltów (MeV), a precyzja pomiaru wynosi ± 9,5 MeV. Takie wyniki są zgodne z pomiarami wykonanymi w poprzedniku LHC, zderzaczu LEP – gdzie przeprowadzano zderzenia elektronów i pozytonów – oraz w nieczynnym już amerykańskim Tevatronie, który zderzał protony i antyprotony. Co więcej, precyzja obecnego pomiaru jest zgodna z precyzją Modelu Standardowego, wynoszącą 8,8 MeV.
Dotychczas najdokładniejszy wynik – 91 187,6 ± 2,1 MeV – dały pomiary w LEP.
Najnowsze osiągnięcie otwiera drogę do jeszcze bardziej precyzyjnych pomiarów, jakich będzie można dokonać za pomocą przyszłego High-Luminosity LHC oraz do pomiarów za pomocą eksperymentów CMS i Atlas. Wyniki pomiarów z różnych eksperymentów wykonywanych w LHC są od siebie niezależne, co oznacza, że ich średnia wartość będzie obarczona jeszcze mniejszym marginesem niepewności.
High-Luminosity LHC może potencjalnie dokonać jeszcze bardziej dokładnych pomiarów bozonu Z niż LEP. Na początku pracy LHC wydawało się to niemożliwe, mówi rzecznik prasowy LHCb Vincenzo Vagnoni.
Źródło: Measurement of the Z-boson mass, https://arxiv.org/abs/2505.15582
« powrót do artykułu -
przez KopalniaWiedzy.pl
Ciemna materia, hipotetyczna materia, która ma stanowić 85% masy kosmosu, wciąż nie została znaleziona. Nie wiemy, z czego się składa, a przekonanie o jej istnieniu pochodzi z obserwacji efektów grawitacyjnych, których obecności nie można wyjaśnić zwykłą materią. Dlatego też co jakiś czas pojawiają się hipotezy opisujące, z czego może składać się ciemna materia. Jedną z nich przedstawili właśnie na lamach Physical Review Letters dwaj uczeni z Dartmouth College. Ich zdaniem ciemna materia może być zbudowana z niemal bezmasowych relatywistycznych cząstek, podobnych do światła, które w wyniku zderzeń utworzyły pary, straciły energię, a zyskały olbrzymią masę.
Ciemna materia rozpoczęła istnienie jako niemal bezmasowe relatywistyczne cząstki, niemal jak światło. To całkowita antyteza tego, jak się obecnie postrzega ciemną materię – to zimne grudki nadające masę galaktykom. Nasza teoria próbuje wyjaśnić, jak przeszła ona ze światła do grudek, mówi profesor fizyki i astronomii Robert Caldwell. Jest on współautorem badań przeprowadzonych z magistrantem fizyki i matematyki Guanmingiem Liangiem.
Po Wielkim Wybuchu wszechświat zdominowany był przez gorące szybko poruszające się cząstki podobne do fotonów. W tym chaosie olbrzymia liczba cząstek utworzyła pary. Zgodnie z ich hipotezą, cząstki były przyciągane do sobie dzięki temu, że ich spiny były zwrócone w przeciwnych kierunkach. Utworzone pary schładzały się, a nierównowaga ich spinów prowadziła do gwałtownej utraty energii. W wyniku tego procesu powstały zimne ciężkie cząstki, które utworzyły ciemną materię. Właśnie ten spadek energii, który wyjaśniał przejście z wysokoenergetycznych gorących cząstek do nierównomiernie rozłożonych zimnych grudek, jest najbardziej zaskakującym efektem działania zastosowanego przez uczonych modelu matematycznego.
To przejście fazowe pozwala na wyjaśnienie olbrzymiej ilości ciemnej materii we wszechświecie. Autorzy badań wprowadzają w swojej teorii teoretyczną cząstkę, która miała zainicjować przejście do cząstek ciemnej materii. Jednak nie jest to zjawisko nieznane. Wiadomo, że cząstki subatomowe mogą przechodzić podobne zmiany. Na przykład w niskich temperaturach dwa elektrony mogą utworzyć pary Coopera. Zdaniem Caldwella i Lianga to dowód, że ich hipotetyczne cząstki również mogłyby zostać skondensowane do ciemnej materii.
Poszukaliśmy w nadprzewodnictwie wskazówek, czy pewne interakcje mogą prowadzić do tak gwałtownego spadku energii. Pary Coopera to dowód, że taki mechanizm istnieje, mówi Caldwell. Liang zaś obrazowo porównuje takie przejścia jako zamianę od gorącego espresso do owsianki.
Badacze zapewniają, że ich model matematyczny jest prosty. Na jego podstawie można przypuszczać, że wspomniane cząstki będzie widać w mikrofalowym promieniowaniu tła (CMB). Zdaniem naukowców, można go będzie przetestować już wkrótce, dzięki obecnie prowadzonym i przyszłym badaniom CMB.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Doroczna konferencja fizyczna Recontres de Moriond przynosi kolejne – po łamaniu symetrii CP przez bariony – fascynujące informacje. Naukowcy pracujący przy eksperymencie CMS w CERN-ie donieśli o zaobserwowaniu w danych z Wielkiego Zderzacza Hadronów sygnałów, które mogą świadczyć o zaobserwowaniu najmniejszej cząstki złożonej. Uzyskane wyniki wskazują, że kwarki wysokie – najbardziej masywne i najkrócej istniejące ze wszystkich cząstek elementarnych – mogą na niezwykle krótką chwilę tworzyć parę z swoim odpowiednikiem w antymaterii (antykwarkiem wysokim) i tworzyć hipotetyczny mezon o nazwie toponium.
Model Standardowy, chociaż sprawdza się od dziesięcioleci, ma niedociągnięcia. Naukowcy próbują je wyjaśnić, poszukując dodatkowych, nieznanych obecnie, bozonów Higgsa. Właściwości takich – wciąż hipotetycznych – cząstek, mają być dość proste. Zakłada się, że powinny one oddziaływać z fermionami z siłą proporcjonalną do masy fermionu, a teorie postulujące istnienie dodatkowych bozonów Higgsa mówią, że powinny one łączyć się bardziej masywnymi kwarkami. Stąd też uwaga naukowców skupiona jest na kwarku wysokim. Ponadto, jeśli takie dodatkowe bozony Higgsa miałyby masę większą od 345 GeV – masa znanego nam bozonu Higgsa to 125 GeV – i rozpadałyby się na pary kwark wysoki-antykwark, to w Wielkim Zderzaczu Hadronów powinien pojawić się nadmiar sygnałów świadczących o produkcji takich par.
W eksperymencie CMS zauważono taki nadmiar, ale – co szczególnie przyciągnęło uwagę naukowców – zauważono go przy energiach stanowiących dolną granicę zakresu poszukiwań. To skłoniło fizyków pracujących przy CMS do wysunięcia hipotezy, że nadmiar ten pochodzi od kwarków wysokich i antykwarków wysokich znajdujących się w stanie quasi-związanym zwanym toponium.
Gdy rozpoczynaliśmy analizy, w ogólnie nie braliśmy pod uwagę możliwości zauważenia toponium. W analizie wykorzystaliśmy uproszczony model toponium. Hipoteza ta jest niezwykle ekscytująca, gdyż nie spodziewaliśmy się, że LHC zarejestruje toponium, mówi koordynator prac, Andreas Meyer z DESY (Niemiecki Synchrotron Elektronowy).
Co prawda nie można wykluczyć innych wyjaśnień zaobserwowanych zjawisk, ale z dotychczasowych badań wynika, że toponium w sposób wystarczający wyjaśnia zaobserwowany nadmiar sygnałów. Uzyskany przez nas przekrój czynny (prawdopodobieństwo) dla naszej uproszczonej hipotezy wynosi 8,8 pb (pikobarnów) ± 15%. Można powiedzieć, że to znacząco powyżej 5 sigma [5 sigma to wartość odchyleń standardowych, powyżej której można ogłosić odkrycie - red.], dodaje Meyer.
Jeśli uda się potwierdzić istnienie toponium, będzie to kolejne poznane kwarkonium, czyli stan utworzony przez kwarka i jego antykwark. Obecnie znamy czarmonium – to kwark powabny (charm) i jego antykwark – oraz bottomonium, czyli kwark spodni (bottom) i antykwark. Czarmonium zostało odkryte w SLAC w 1974 roku, a bottomium znaleziono trzy lata później w Fermilabie.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.