Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

W Wielkim Zderzaczu Hadronów (LHC) mogą powstawać niewykryte dotychczas ciężkie cząstki

Recommended Posts

Część fizyków uważa, że w Wielkim Zderzaczu Hadronów (LHC) powstają długo żyjące cząstki, które dotychczas nie zostały wykryte. W przyszłym tygodniu w CERN odbędzie się spotkanie, na którym zostaną omówione metody zarejestrowania tych cząstek.

W 2012 roku LHC zarejestrował obecność bozonu Higgsa, ostatniej nieuchwyconej wcześniej cząstki przewidywanej przez Model Standardowy. Jednak od tamtej pory nie znaleziono niczego nowego czy niespodziewanego. Niczego, co wykracałowy poza Model Standardowy. Nie odkryliśmy nowej fizyki, nie potwierdziliśmy założeń, z jakimi rozpoczynaliśmy prace. Może należy zmienić te założenia, mówi Juliette Alimena z Ohio State University, która pracuje przy CMS (Compact Muon Solenoid), jednym z dwóch głównych detektorów cząstek w LHC.

Pomimo tego, że w LHC zainwestowano miliardy dolarów, to urządzenia pracuje tak, jak pracowały akceleratory przed kilkudziesięcioma laty. Fizycy od dekad zderzają ze sobą protony lub elektrony, zwiększają ich energie, by w procesie tym uzyskać nowe ciężkie cząstki i obserwować, jak w ciągu biliardowych części sekundy rozpadają się na lżejsze, znane nam cząstki. Te lżejsze są wykrywane i na podstawie ich charakterystyk wiemy, z jakich cięższych cząstek pochodzą. Tak właśnie działa i CMS i drugi z głównych wykrywaczy LHC – ATLAS (A Toroidal LHC Apparatus).

Jednak długo żyjące ciężkie cząstki mogą umykać uwadze detektorów. Przypuszczenie takie nie jest nowe. Niemal wszystkie teorie wykraczające poza standardowe modele fizyczne przewidują istnienie długo żyjących cząstek, mówi Giovanna Cottin, fizyk-teoretyk z Narodowego Uniwersytetu Tajwańskiego. Na przykład teoria supersymetrii mówi, że każda z cząstek Modelu Standardowego ma cięższego partnera. Istnieją teorie mówiące też o istnieniu np. ciemnych fotonów i innych „ciemnych” cząstek. Dotychczas niczego takiego nie udało się zaobserwować.

LHC nie został zaprojektowany do poszukiwania cząstek wykraczających poza Model Standardowy. CMS i ATLAS skonstruowano tak, by wykrywały cząstki ulegające natychmiastowemu rozpadowi. Każdy z nich zawiera warstwowo ułożone podsystemy rejestrujące produkty rozpadu cząstek. Wszystkie one ułożone są wokół centralnego punktu, w którym dochodzi do zderzenia. Jednak problem w tym, że jeśli w wyniku zderzenia powstanie cząstka, która będzie żyła tak długo, iż przed rozpadem zdoła przebyć chociaż kilka milimetrów, to pozostawi ona po sobie nieoczywiste sygnały, smugi, zaburzone trasy ruchu.

Oprogramowanie służące do analiz wyników z detektorów odrzuca takie dane, traktując je jak zakłócenia, artefakty. To problem, bo my tak zaprojektowaliśmy eksperymenty, a programiści tak napisali oprogramowanie, że po prostu odfiltrowuje ono takie rzeczy, mówi Tova Holmes z University of Chicago, która w wykrywaczu ATLAS poszukuje takich zaburzeń.

Holmes i jej koledzy wiedzą, że muszą zmienić oprogramowanie. Jednak to nie wystarczy. W pierwszym rzędzie należy upewnić się, że wykrywacze w ogóle będą rejestrowały takie dane. Jako, że w w LHC w ciągu sekundy dochodzi do 400 milionów zderzeń protonów, w samym sprzęcie zastosowano mechanizmy chroniące przed przeładowaniem danymi. Już na poziomie sprzętowym dochodzi do odsiewania zderzeń i podejmowania decyzji, które są interesujące, a które należy odrzucić. W ten sposób do dalszej analizy kierowane są dane z 1 na 2000 zderzeń. To zaś oznacza, że możemy mieć do czynienia z utratą olbrzymiej ilości interesujących danych. Dlatego też część naukowców chciałaby przyjrzeć się kalorymetrowi CMS, do którego mogą docierać długo żyjące ciężkie cząstki. Chcieliby zastosować mechanizm, który od czasu do czasu będzie odczytywał pełne wyniki wszystkich zderzeń.

Szukanie ciężkich cząstek nigdy nie było łatwe, chociażby dlatego, że naukowcy mieli różne pomysły na to, jak je zarejestrować. To zawsze było tak, że pracowały nad tym pojedyncze osoby. A każdy z nich sam dla siebie stanowił grupę wsparcia, przyznaje James Beacham z Ohio State University. Teraz zainteresowani połączyli siły i w marcu ukazało się 301-stronicowe opracowanie autorstwa 182 naukowców, w którym zaproponowano metody optymalizacji poszukiwań ciężkich cząstek.

Niektórzy z nich proponują, by w najbliższej kampanii, planowanej na lata 2012–2023 częściej zbierano kompletne dane ze wszystkich zderzeń. Niewykluczone, że to ostatnia szansa na zastosowanie tej techniki, gdyż później intensywność generowanych wiązek zostanie zwiększona i zbieranie wszystkich danych stanie się trudniejsze.

Inni chcą zbudowania kilku nowych detektorów wyspecjalizowanych w poszukiwaniu ciężkich cząstek. Jonathan Feng, fizyk-teoretyk z Uniwersytetu Kalifornijskiego w Irvine, wraz z kolegami uzyskali nawet od CERN zgodę na zbudowanie Forward Search Experiment (FASER). To niewielki detektor, który ma zostać umieszczony w tunelu serwisowym w odległości 480 metrów w dół wiązki od ATLAS-a. Naukowcy zebrali już nawet 2 miliony dolarów od prywatnych sponsorów i dostali potrzebne podzespoły. FASER ma poszukiwać lekkich cząstek, takich jak ciemne fotony, które mogą być wyrzucane z ATLAS-a, przenikać przez skały i rozpadać się w pary elektron-pozyton.

Jeszcze inna propozycja zakłada wykorzystanie pustej komory znajdującej się za niewielkim wykrywaczem LHCb. Umieszczony tam Compact Detector for Exotics at LHCb miałby poszukiwać długo żyjących cząstek, szczególnie tych pochodzących z rozpadu bozonu Higgsa.

Jednak najbardziej ambitną propozycją jest budowa detektora o nazwie MATHULSLA. Miałby to być wielki pusty budynek wzniesiony na powierzchni nad detektorem CMS. W jego dachu miałyby zostać umieszczone czujniki, które rejestrowałyby dżety pochodzące z rozpadu długo żyjących cząstek powstających 70 metrów poniżej, wyjaśnia David Curtin z Uniwersytetu w Toronto, jeden z pomysłodawców wykrywacza. Uczony jest optymistą i uważa, że detektor nie powinien kosztować więcej niż 100 milionów euro.

Po nocach śni nam się koszmar, w którym Jan Teoretyk powie nam za 20 lat, że niczego nie odkryliśmy bo nie rejestrowaliśmy odpowiednich wydarzeń i nie prowadziliśmy właściwych badań, mówi Beacham, który pracuje przy wykrywaczu ATLAS.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Nadeszły długo oczekiwane pierwsze wyniki badań w eksperymencie Muon g-2 prowadzonym przez Fermi National Accelerator Laboratory (Fermilab). Pokazują one, że miony zachowują się w sposób, który nie został przewidziany w Modelu Standardowym. Badania, przeprowadzone z bezprecedensową precyzją, potwierdzają sygnały, jakie inni naukowcy zauważali od dekad. Jeśli się potwierdzą, będzie to wyraźnym dowodem, iż miony wykraczają poza Model Standardowy i mogą wchodzić w interakcje z nieznaną cząstką.
      To wyjątkowy dzień, długo oczekiwany nie tylko przez nas, ale przez całą społeczność fizyków, mówi Graziano Venanzoni, fizyk z Włoskiego Narodowego Instytutu Fizyki Jądrowej, rzecznik eksperymentu Muon g-2.
      Miony są około 200 razy bardziej masywne niż ich kuzyni, elektrony. Występują w promieniowaniu kosmicznym docierającym do Ziemi, a w akceleratorach cząstek potrafimy uzyskiwać je w dużych ilościach. Podobnie jak elektrony, miony zachowują się tak, jakby zawierały magnes. Jak wiemy ze wzoru wprowadzonego przez Paula Diraca, twórcę teorii kwarków, moment magnetyczny samotnego mionu – współczynnik g – ma wartość 2. Stąd zresztą nazwa eksperymentu Muon g-2. Z czasem do wyliczeń tych wprowadzono niewielkie poprawki, określając dokładną wartość współczynnika.
      Jednak na mion, podobnie zresztą jak na elektron, wpływa jego otoczenie. Gdy miony krążą w eksperymencie Muon g-2 stykają się z kwantową pianką tworzoną przez pojawiające się i znikające subatomowe cząstki. Interakcja z nimi wpływa na wartość współczynnika g. Model Standardowy pozwala z wielką precyzją wyliczyć tę wartość. Oczywiście uwzględniając przy tym znane nam cząstki. Jeśli więc pojawi się cząstka lub siła nieznana w Modelu Standardowym, współczynnik g przyjmie wartość, która nie jest przezeń przewidziana.
      To, co mierzymy, odzwierciedla wszystkie interakcje, z jakimi mion miał do czynienia. Jednak gdy teoretycy przeprowadzają swoje obliczenia, biorąc pod uwagę wszystkie znane siły i cząstki Modelu Standardowego, okazuje się, że wynik ich obliczeń jest różny od wyniku naszego eksperymentu. To silna wskazówka, że na mion działa coś, czego nie przewiduje Model, mówi Renee Fatemi, fizyk z University of Kentucky, która jest odpowiedzialna za symulacje w eksperymencie Muon g-2.
      Zgodnie z akceptowanymi obecnie wyliczeniami teoretyków współczynnik g dla mionu wynosi 2,00233183620(86), a wartość poprawki momentu magnetycznego to 0,00116591810(43). W nawiasach zawarto niepewność wyliczeń. Tymczasem uśrednione wartości, jakie uzyskano podczas najnowszych eksperymentów w Fermilab to 2,00233184122(82) oraz 0,00116592061(41).
      Istotność statystyczna tej różnicy – czyli w tym przypadku niezgodność obliczeń teoretycznych obliczeń z pomiarami – wynosi aż 4,2 sigma. Przypomnijmy tutaj, że od 5 sigma mówimy w fizyce o odkryciu. Prawdopodobieństwo, że uzyskane wyniki są fałszywe wynosi 1:40 000. Jak zatem widać, fizycy o odkryciu jeszcze nie mówią, ale mają bardzo silne przesłanki, by wierzyć w wyniki eksperymentu.
      Eksperyment Moun g-2 zaczął w Fermilab pracę w 2018 roku. Korzysta on z nadprzewodzącego magnetycznego pierścienia akumulacyjnego o średnicy ponad 15 metrów. W 2013 roku pierścień ten został przewieziony z Brookhaven National Laboratory, gdzie nie był już potrzebny. To niezwykłe wydarzenie opisywaliśmy przed 8 laty. Przez kolejne 4 lata specjaliści składali, kalibrowali i testowali nowe urządzenie, wyposażając Moun g-2 w najnowsze osiągnięcia techniki i tworząc na jego potrzebny nowe metody badawcze.
      W eksperymencie tym strumień mionów tysiące razy krąży w pierścieniu z prędkością bliską prędkości światła. Tylko w pierwszym roku działania Muong g-2 z Fermilab zebrał więcej danych niż wszystkie wcześniejsze eksperymenty razem wzięte. Dzięki współpracy ponad 200 naukowców z 35 instytucji naukowych z 7 krajów udało się obecnie dostarczyć szczegółowe dane dotyczące pomiarów ruchu ponad 8 miliardów mionów wykorzystywanych podczas pierwszego sezonu badawczego (rok 2018). Obecnie prowadzone są analizy danych z dwóch kolejnych sezonów (lata 2019–2020). Jednocześnie trwa czwarty sezon, a piąty jest planowany.
      Połączenie danych ze wszystkich wspomnianych sezonów pozwoli na określenie współczynnika g z jeszcze większą precyzją. Dotychczas przeanalizowaliśmy mniej niż 6% danych, jakie dostarczy nam Muon g-2. Już pierwsze wyniki pokazują, że istnieje interesująca rozbieżność pomiędzy eksperymentem a Modelem Standardowym. W ciągu najbliższych kilku lat dowiemy się znacznie więcej, mówi Chris Polly z Fermilab, który jako student brał udział w badaniach w Brookhaven.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W połowie marca został opublikowany tzw. żółty raport nowego Zderzacza Elektron-Jon (EIC), który ma powstać w USA. Stworzyli go naukowcy z ponad 150 instytucji na świecie, w tym z NCBJ. Raport formułuje oczekiwania dotyczące badań prowadzonych w przyszłym urządzeniu i wskazuje sposoby stworzenia najlepszej służącej temu celowi konstrukcji.
      To już kolejny niezwykle ważny krok w kierunku powstania EIC. Nieco ponad 2 lata temu informowaliśmy o zaakceptowaniu celów naukowych dla akceleratora, a w ubiegłym roku dowiedzieliśmy się, że wskazano lokalizację EIC.
      Tak zwany żółty raport (ang. yellow report) jest podsumowaniem przeszło rocznej pracy nad przygotowaniem projektu Zderzacza Elektron-Jon (ang. electron-ion collider, EIC), który powstanie w amerykańskim Narodowym Laboratorium w Brookhaven. Fizycy z Zakładu Fizyki Teoretycznej NCBJ – prof. dr hab. Lech Szymanowski, dr hab. Jakub Wagner i dr Paweł Sznajder są współautorami tego opracowania. We współpracy z eksperymentalistami, badali oni na jego potrzeby możliwość pomiaru procesów czułych na tzw. uogólnione rozkłady partonów (ang. generalised parton distributions, GPDs). Uogólnione rozkłady partonów opisują strukturę materii w języku kwarków i gluonów, czyli na możliwie najbardziej elementarnym poziomie – wyjaśnia dr Paweł Sznajder. Wypracowane wnioski dotyczą m. in. optymalizacji projektu detektorów, czyli ich geometrii i podzespołów, tak aby w możliwie jak najlepszy sposób zrealizować postawione cele badawcze.
      Jednym z obiecujących procesów, które naszym zdaniem warto badać w zderzeniach elektronów z jonami jest tzw. rozpraszanie do tyłu – uzupełnia profesor Lech Szymanowski. W procesie tym wirtualny foton wymieniany pomiędzy zderzanym elektronem, a jednym z kwarków nukleonu prowadzi do wytworzenia w stanie końcowym mezonu o pędzie przeciwnym do pędu fotonu, co uzasadnia nazwę takiego procesu jako produkcji mezonu do tylu (backward meson production). Od pewnego czasu przekonywaliśmy eksperymentatorów, że te procesy poddające się częściowo analizie perturbacyjnej mogą być cennym uzupełniającym źródłem informacji o strukturze partonowej nukleonów, którą typowo bada się w procesach z mezonem w stanie końcowym z pędem zbliżonym do pędu zderzającego się fotonu (forward meson production). Początkowo podejście kolegów do naszej propozycji było sceptyczne, gdyż proces produkcji mezonu do tyłu jest silnie tłumiony przez wyższą potęgę małej stałej sprzężenia oddziaływań silnych występujace w części amplitudy rozpraszania opisywanej teorią zaburzeń. Jednak nasze obliczenia pokazały, że należy także w tym przypadku oczekiwać obserwowalnych doświadczalnie sygnałów. W efekcie wskazanymi przez nas procesami zainteresowali się zarówno fizycy z działającego zderzacza w Jefferson LAB, jak i zostały one uwzględnione w programie badawczym EIC.
      Praca nad raportem pozwoliła także na zainicjowanie szeregu aktywności związanych z rozwojem metod obliczeniowych – dodaje dr Sznajder. Pracujemy m. in. nad metodami Monte Carlo, będącymi ważną częścią symulacji pracy detektorów. Ponadto jesteśmy zaangażowani w rozwój platformy obliczeniowej PARTONS, z której korzystają teoretycy i doświadczalnicy badający rozkłady GPD.
      Dążymy do stworzenia trójwymiarowego obrazu protonu – wyjaśnia szczegóły dr hab. Jakub Wagner. Wykonaliśmy obliczenia teoretyczne i skorzystaliśmy z platformy PARTONS, aby uzyskać przewidywania przekrojów czynnych, czyli prawdopodobieństw zajść interesujących nas procesów fizycznych. Wszystko to po to, by eksperymentatorzy wiedzieli gdzie i jakie detektory umieścić wokół miejsca zderzeń, aby uzyskać najwięcej interesujących informacji.
      Tworzenie tzw. żółtych raportów dla projektowanych wielkich urządzeń badawczych to typowa praktyka w świecie nauki w obszarze fizyki wysokich energii. Na podstawie tego typu raportów są następnie organizowane współprace eksperymentalne i projektowane są detektory.
      Publikacja żółtego raportu EIC zbiegła się w czasie z publikacją tzw. białego, bardziej podstawowego raportu dla chińskiego zderzacza elektron-jon (ang. Electron-Ion Collider in China, EIcC). Raport ten jest podsumowaniem celów badawczych, które można by zrealizować w EIcC. W jego przygotowaniu byli również zaangażowani nasi fizycy. Projekt EIcC nie jest jeszcze zaakceptowany do realizacji. Jeżeli powstanie, będzie posiadał inne parametry pracy zderzacza w stosunku do projektu amerykańskiego, przez co uzupełni światowy program badawczy fizyki wielkich energii, szczególnie ten związany z chromodynamiką kwantową (ang. quantum chromodynamics, QCD). Budowę zderzacza elektronów i jonów rozważa także CERN.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Podczas ostatnich badań w CERN zdobyto dane, które – jeśli zostaną potwierdzone – będą oznaczały, że doszło do naruszenia Modelu Standardowego. Dane te dotyczą potencjalnego naruszenia zasady uniwersalności leptonów. O wynikach uzyskanych w LHCb poinformowano podczas konferencji Recontres de Moriond, na której od 50 lat omawia się najnowsze osiągnięcia fizyki oraz w czasie seminarium w CERN.
      Podczas pomiarów dokonywanych w LHCb porównywano dwa typy rozpadu kwarków powabnych. W pierwszym z nich pojawiają się elektrony, w drugim miony. Miony są podobne do elektronów, ale mają około 200-krotnie większą masę. Elektron, mion i jeszcze jedna cząstka – tau – to leptony, które różnią się pomiędzy sobą zapachami. Zgodnie z Modelem Standardowym, interakcje, w wyniku których pojawiają się leptony, powinny z takim samym prawdopodobieństwem prowadzić do pojawiania się elektronów i mionów podczas rozpadu kwarka powabnego.
      W roku 2014 zauważono coś, co mogło wskazywać na naruszenie zasady uniwersalności leptonów. Teraz, po analizie danych z lat 2011–2018 fizycy z CERN poinformowali, że dane wydają się wskazywać, iż rozpad kwarka powabnego częściej dokonuje się drogą, w której pojawiają się elektrony niż miony.
      Istotność zauważonego zjawiska to 3,1 sigma, co oznacza, iż prawdopodobieństwo, że jest ono zgodne z Modelem Standardowym wynosi 0,1%. Jeśli naruszenie zasady zachowania zapachu leptonów zostanie potwierdzone, wyjaśnienie tego procesu będzie wymagało wprowadzenie nowych podstawowych cząstek lub interakcji, mówi rzecznik prasowy LHCb profesor Chris Parkes z University of Manchester.
      Rozpad kwarka powabnego prowadzi do pojawienia się kwarka dziwnego oraz elektronu i antyelektronu lub mionu i antymionu. Zgodnie z Modelem Standardowym w procesie tym pośredniczą bozony W+ i Z0. Jednak naruszenie zasady uniwersalności leptonów wskazuje, że zaangażowana w ten proces może być jakaś nieznana cząstka. Jedna z hipotez mówi, że jest to leptokwark, masywny bozon, który wchodzi w interakcje zarówno z leptonami jak i z kwarkami.
      Co istotne, dane z LHCb zgadzają się z danymi z innych anomalii zauważonych wcześniej zarówno w LHCb, jak i obserwowanych od 10 lat podczas innych eksperymentów na całym świecie. Nicola Serra z Uniwersytetu w Zurichu mówi, że jest zbyt wcześnie by wyciągać ostateczne wnioski. Jednak odchylenia te zgadzają się ze wzorcem anomalii obserwowanych przez ostatnią dekadę. Na szczęście LHCb jest odpowiednim miejscem, w którym możemy sprawdzić potencjalne istnienie nowych zjawisk fizycznych w tego typu rozpadach. Musimy przeprowadzić więcej pomiarów.
      LHCb to jeden z czterech głównych eksperymentów Wielkiego Zderzacza Hadronów.Jego zadaniem jest badanie rozpadu cząstek zawierających kwark powabny.
      Artykuły na temat opisanych tutaj badań zostały opublikowane na stronach arXiv oraz CERN.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy pracujący przy Wielkim Zderzaczu Hadronów (LHC) poinformowali o nowym sposobie używania tego niezwykłego urządzenia badawczego. Eksperyment ATLAS zaobserwował pierwsze zderzenie fotonów, w wyniku którego powstała para bozonów W, będących nośnikami oddziaływań słabych. Okazuje się zatem, że LHC można wykorzystywać też do bezpośrednich badań oddziaływań słabych. Obserwacje potwierdzają jedno z najważniejszych przewidywań teorii dotyczących tych oddziaływań – ich nośniki mogą oddziaływać ze sobą.
      Klasyczna elektrodynamika mówi, że dwa przecinające się promienie światła nie odbiją się od siebie, nie będą się absorbowały lub nawzajem niszczyły. Jednak elektrodynamika kwantowa dopuszcza interakcje pomiędzy fotonami.
      Nie są to pierwsze badania fotonów przeprowadzone przy użyciu LHC. Obserwowano rozpraszanie światła przez światło, kiedy to pary fotonów wchodziły w interakcje tworząc inną parę fotonów. W eksperymencie ATLAS zdobyto pierwsze bezpośrednie dowody takiego rozpraszania.
      Podczas nowych eksperymentów badano zupełnie inne zjawisko. W wyniku interakcji pomiędzy dwoma fotonami pojawiły się dwa bozony W o przeciwnych ładunkach elektrycznych. Już kilka lat temu uzyskano pierwsze wskazówki, że zjawisko takie zachodzi. Potrzeba było jednak więcej danych, by je potwierdzić. Teraz naukowcy zyskali pewność. Wynosi ona bowiem 8,4 sigma, a o odkryciu mówi się już przy poziomie 5 sigma.
      W centralnym detektorze były widoczne tylko produktu rozpadu dwóch bozonów W, elektron i mion. Co prawda pary bozonów W powstają też – i to znacznie częściej – w wyniku interakcji pomiędzy kwarkami i gluonami w zderzających się protonach, jednak w takim przypadku widoczne są jeszcze inne sygnały niż gdy powstają one w wyniku zderzeń fotonów.
      Nowe badania potwierdziły, że bozony cechowania – bozony W, Z i fotony – również wchodzą ze sobą w interakacje. Ich badanie może stać się nowym sposobem testowania Modelu Standardowego.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      CERN informuje, że eksperymenty ATLAS i CMS zdobyły pierwsze dowody wskazujące, że bozon Higgsa rozpada się na dwa miony. Mion to cięższa kopia elektronu, jednej z podstawowych cząstek, z których zbudowany jest cała materia. O ile jednak elektrony są cząstkami pierwszej generacji, to miony należą do generacji drugiej. Rozpad bozonu Higgsa do mionów to rzadkie zjawisko, zachodzące w 1 na 5000 rozpadów. To ważne odkrycie, gdyż wskazuje, że bozon Higgsa wchodzi w interakcje z cząstkami drugiej generacji.
      Według Modelu Standardowego cała materia zbudowana jest z fermionów. Jest ich 12 i dzielą się na 6 kwarków i 6 leptonów. Otaczającą nas materię trwałą tworzą cząstki pierwszej generacji: elektron, neutrino elektronowe, kwark dolny i kwark górny. Druga generacja cząstek to mion, neutrino mionowe, kwark dziwny i kwark powabny. Istnieje jeszcze trzecia generacja fermionów (taon, neutrino taonowe, kwark spodni i kwark szczytowy) oraz 4 bozony cechowania przenoszące oddziaływania i bozon Higgsa, nadający masę cząstkom, z którymi oddziałuje.
      Bozon Higgsa jest przedmiotem intensywnych badań od czasu jego wykrycia w 2012 roku. Jego znalezienie było głównym zadaniem Wielkiego Zderzacza Hadronów. Jedną z podstawowych metod badań jest obserwacja jego rozpadu. Eksperyment CMS wykazał, że bozon Higgsa rozpada się na dwa miony a prawdopodobieństwo takiego wydarzenia wynosi 3 sigma. Oznacza to, że jeśli taki rozpad nie istnieje, to pojawienie się takich danych w CMS wynosi mniej niż 1:700. Z kolei ATLAS wskazał na istnienie rozpadu Higgsa do dwóch mionów z prawdopodobieństwem 2 sigma. Tutaj szanse na otrzymanie fałszywego sygnału to 1:40. Razem z pewnością znacznie przekraczającą 3 sigma można mówić o istnieniu opisanego mechanizmu. Odkrycie ogłasza się przy 5 sigma.
      Wydaje się, że bozon Higgsa wchodzi w interakcje z cząstkami elementarnymi drugiej generacji w sposób zgodny z Modelem Standardowym. Podczas kolejnej kampanii badawczej będziemy uściślali te wyniki, mówi Roberto Carlin, rzecznik prasowy CMS.
      Bozon Higgsa to kwantowa manifestacja pola Higgsa, które nadaje masę cząstkom elementarnym. Mierząc tempo rozpadu bozonu Higgsa w różne cząstki fizycy mogą obliczyć siłę ich interakcji z polem Higgsa. Im szybszy rozpad, tym silniejsze interakcje.
      Dotychczas Wielki Zderzacz Hadronów wykazał, że bozon Higgsa rozpada się w różne bozony, jak W i Z czy cięższe fermiony, jak leptony tau. Zmierzono też interakcje z najcięższymi kwarkami, górnym i spodnim. Miony są znacznie lżejsze, więc słabiej reagują z polem Higgsa.
      Pomiary bozonu Higgsa osiągnęły wyższy poziom precyzji, dzięki czemu możemy badać rzadsze sposoby rozpadu, mówi Karl Jakobs, rzecznik prasowy eksperymentu ATLAS.
      Poważnym problemem w prowadzeniu opisywanych tutaj badań jest fakt, że na każdy bozon Higgsa rozpadający się na dwa miony przypadają tysiące par mionów powstających w wyniku innych procesów. Charakterystyczną sygnaturą bozonu Higgsa po rozpadzie do mionów jest niewielki nadmiar mas par mionów przy energii 125 GeV, czyli masie bozonu Higgsa. Wyizolowanie tego rozpadu nie jest łatwe. By to zrobić naukowcy musieli mierzyć energię, pęd oraz moment pędu mionów.
      Specjaliści spodziewają się, że dzięki kolejnym kampaniom badawczym oraz wykorzystaniu w przyszłości High-Luminosity LHC można będzie mówić o osiągnięciu pewności (5 sigma) i odkryciu, że bozon Higgsa rozpada się do mionów.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...