Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

W Wielkim Zderzaczu Hadronów (LHC) mogą powstawać niewykryte dotychczas ciężkie cząstki

Recommended Posts

Część fizyków uważa, że w Wielkim Zderzaczu Hadronów (LHC) powstają długo żyjące cząstki, które dotychczas nie zostały wykryte. W przyszłym tygodniu w CERN odbędzie się spotkanie, na którym zostaną omówione metody zarejestrowania tych cząstek.

W 2012 roku LHC zarejestrował obecność bozonu Higgsa, ostatniej nieuchwyconej wcześniej cząstki przewidywanej przez Model Standardowy. Jednak od tamtej pory nie znaleziono niczego nowego czy niespodziewanego. Niczego, co wykracałowy poza Model Standardowy. Nie odkryliśmy nowej fizyki, nie potwierdziliśmy założeń, z jakimi rozpoczynaliśmy prace. Może należy zmienić te założenia, mówi Juliette Alimena z Ohio State University, która pracuje przy CMS (Compact Muon Solenoid), jednym z dwóch głównych detektorów cząstek w LHC.

Pomimo tego, że w LHC zainwestowano miliardy dolarów, to urządzenia pracuje tak, jak pracowały akceleratory przed kilkudziesięcioma laty. Fizycy od dekad zderzają ze sobą protony lub elektrony, zwiększają ich energie, by w procesie tym uzyskać nowe ciężkie cząstki i obserwować, jak w ciągu biliardowych części sekundy rozpadają się na lżejsze, znane nam cząstki. Te lżejsze są wykrywane i na podstawie ich charakterystyk wiemy, z jakich cięższych cząstek pochodzą. Tak właśnie działa i CMS i drugi z głównych wykrywaczy LHC – ATLAS (A Toroidal LHC Apparatus).

Jednak długo żyjące ciężkie cząstki mogą umykać uwadze detektorów. Przypuszczenie takie nie jest nowe. Niemal wszystkie teorie wykraczające poza standardowe modele fizyczne przewidują istnienie długo żyjących cząstek, mówi Giovanna Cottin, fizyk-teoretyk z Narodowego Uniwersytetu Tajwańskiego. Na przykład teoria supersymetrii mówi, że każda z cząstek Modelu Standardowego ma cięższego partnera. Istnieją teorie mówiące też o istnieniu np. ciemnych fotonów i innych „ciemnych” cząstek. Dotychczas niczego takiego nie udało się zaobserwować.

LHC nie został zaprojektowany do poszukiwania cząstek wykraczających poza Model Standardowy. CMS i ATLAS skonstruowano tak, by wykrywały cząstki ulegające natychmiastowemu rozpadowi. Każdy z nich zawiera warstwowo ułożone podsystemy rejestrujące produkty rozpadu cząstek. Wszystkie one ułożone są wokół centralnego punktu, w którym dochodzi do zderzenia. Jednak problem w tym, że jeśli w wyniku zderzenia powstanie cząstka, która będzie żyła tak długo, iż przed rozpadem zdoła przebyć chociaż kilka milimetrów, to pozostawi ona po sobie nieoczywiste sygnały, smugi, zaburzone trasy ruchu.

Oprogramowanie służące do analiz wyników z detektorów odrzuca takie dane, traktując je jak zakłócenia, artefakty. To problem, bo my tak zaprojektowaliśmy eksperymenty, a programiści tak napisali oprogramowanie, że po prostu odfiltrowuje ono takie rzeczy, mówi Tova Holmes z University of Chicago, która w wykrywaczu ATLAS poszukuje takich zaburzeń.

Holmes i jej koledzy wiedzą, że muszą zmienić oprogramowanie. Jednak to nie wystarczy. W pierwszym rzędzie należy upewnić się, że wykrywacze w ogóle będą rejestrowały takie dane. Jako, że w w LHC w ciągu sekundy dochodzi do 400 milionów zderzeń protonów, w samym sprzęcie zastosowano mechanizmy chroniące przed przeładowaniem danymi. Już na poziomie sprzętowym dochodzi do odsiewania zderzeń i podejmowania decyzji, które są interesujące, a które należy odrzucić. W ten sposób do dalszej analizy kierowane są dane z 1 na 2000 zderzeń. To zaś oznacza, że możemy mieć do czynienia z utratą olbrzymiej ilości interesujących danych. Dlatego też część naukowców chciałaby przyjrzeć się kalorymetrowi CMS, do którego mogą docierać długo żyjące ciężkie cząstki. Chcieliby zastosować mechanizm, który od czasu do czasu będzie odczytywał pełne wyniki wszystkich zderzeń.

Szukanie ciężkich cząstek nigdy nie było łatwe, chociażby dlatego, że naukowcy mieli różne pomysły na to, jak je zarejestrować. To zawsze było tak, że pracowały nad tym pojedyncze osoby. A każdy z nich sam dla siebie stanowił grupę wsparcia, przyznaje James Beacham z Ohio State University. Teraz zainteresowani połączyli siły i w marcu ukazało się 301-stronicowe opracowanie autorstwa 182 naukowców, w którym zaproponowano metody optymalizacji poszukiwań ciężkich cząstek.

Niektórzy z nich proponują, by w najbliższej kampanii, planowanej na lata 2012–2023 częściej zbierano kompletne dane ze wszystkich zderzeń. Niewykluczone, że to ostatnia szansa na zastosowanie tej techniki, gdyż później intensywność generowanych wiązek zostanie zwiększona i zbieranie wszystkich danych stanie się trudniejsze.

Inni chcą zbudowania kilku nowych detektorów wyspecjalizowanych w poszukiwaniu ciężkich cząstek. Jonathan Feng, fizyk-teoretyk z Uniwersytetu Kalifornijskiego w Irvine, wraz z kolegami uzyskali nawet od CERN zgodę na zbudowanie Forward Search Experiment (FASER). To niewielki detektor, który ma zostać umieszczony w tunelu serwisowym w odległości 480 metrów w dół wiązki od ATLAS-a. Naukowcy zebrali już nawet 2 miliony dolarów od prywatnych sponsorów i dostali potrzebne podzespoły. FASER ma poszukiwać lekkich cząstek, takich jak ciemne fotony, które mogą być wyrzucane z ATLAS-a, przenikać przez skały i rozpadać się w pary elektron-pozyton.

Jeszcze inna propozycja zakłada wykorzystanie pustej komory znajdującej się za niewielkim wykrywaczem LHCb. Umieszczony tam Compact Detector for Exotics at LHCb miałby poszukiwać długo żyjących cząstek, szczególnie tych pochodzących z rozpadu bozonu Higgsa.

Jednak najbardziej ambitną propozycją jest budowa detektora o nazwie MATHULSLA. Miałby to być wielki pusty budynek wzniesiony na powierzchni nad detektorem CMS. W jego dachu miałyby zostać umieszczone czujniki, które rejestrowałyby dżety pochodzące z rozpadu długo żyjących cząstek powstających 70 metrów poniżej, wyjaśnia David Curtin z Uniwersytetu w Toronto, jeden z pomysłodawców wykrywacza. Uczony jest optymistą i uważa, że detektor nie powinien kosztować więcej niż 100 milionów euro.

Po nocach śni nam się koszmar, w którym Jan Teoretyk powie nam za 20 lat, że niczego nie odkryliśmy bo nie rejestrowaliśmy odpowiednich wydarzeń i nie prowadziliśmy właściwych badań, mówi Beacham, który pracuje przy wykrywaczu ATLAS.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Rada CERN jednogłośnie przyjęła dzisiaj plan dotyczący strategii rozwoju badań nad fizyką cząstek w Europie. Plan zakłada m.in. wybudowanie 100-kilometrowego akceleratora cząstek. O stworzeniu wstępnego raportu projektowego budowy Future Circular Collider (FCC) informowaliśmy na początku ubiegłego roku.
      The European Strategy for Particle Physics został po raz pierwszy przyjęty w 2006 roku, a w roku 2013 doczekał się pierwszej aktualizacji. Prace nad jego obecną wersją rozpoczęły się w 2018 roku, a w styczniu ostateczna propozycja została przedstawiona podczas spotkania w Niemczech. Teraz projekt zyskał formalną akceptację.
      CERN będzie potrzebował znaczniej międzynarodowej pomocy, by zrealizować swoje ambitne plany. Stąd też w przyjętym dokumencie czytamy, że Europa i CERN, za pośrednictwem Neutrino Platform, powinny kontynuować wsparcie dla eksperymentów w Japonii i USA. W szczególności zaś, należy kontynuować współpracę ze Stanami Zjednoczonymi i innymi międzynarodowymi partnerami nad Long-Baseline Neutriono Facility (LBNF) oraz Deep Underground Neutrino Experiment (DUNE).
      Obecnie szacuje się, że budowa nowego akceleratora, który byłby następcą Wielkiego Zderzacza Hadronów, pochłonie co najmniej 21 miliardów euro. Instalacja, w której dochodziłoby do zderzeń elektronów z pozytonami, miała by zostać uruchomiona przed rokiem 2050.
      Zatwierdzenie planów przez Radę CERN nie oznacza jednak, że na pewno zostaną one zrealizowane. Jednak decyzja taka oznacza, że CERN może teraz rozpocząć pracę nad projektem takiego akceleratora, jego wykonalnością, a jednocześnie rozważać inne konkurencyjne projekty dla następcy LHC. Myślę, że to historyczny dzień dla CERN i fizyki cząstek, zarówno w Europie jak i poza nią, powiedziała dyrektor generalna CERN Fabiola Gianotti po przyjęciu proponowanej strategii.
      Z opinią taką zgadzają się inni specjaliści. Dotychczas bowiem CERN rozważał wiele różnych propozycji. Teraz wiadomo, że skupi się przede wszystkim na tej jednej.
      Przyjęta właśnie strategia zakłada dwuetapowe zwiększanie możliwości badawczych CERN. W pierwszym etapie CERN wybuduje zderzacz elektronów i pozytonów, którego energia zostanie tak dobrana, by zmaksymalizować produkcję bozonów Higgsa i lepiej zrozumieć ich właściwości.
      Później instalacja ta zostanie rozebrana, a w jej miejscu powstanie potężny zderzacz protonów. Urządzenie będzie pracowało z energiami rzędu 100 teraelektronowoltów (TeV). Dla porównania, LHC osiąga energie rzędu 16 TeV.
      Zadaniem nowego zderzacza będzie poszukiwanie nowych cząstek i sił natury. Większość technologii potrzebna do jego zbudowania jeszcze nie istnieje. Będą one opracowywane w najbliższych dekadach.
      Co ważne, mimo ambitnych planów budowy 100-kilometrowego zderzacza, nowo przyjęta strategia zobowiązuje CERN do rozważenia udziału w International Linear Collider, którego projekt jest od lat forsowany przez japońskich fizyków. Japończycy są zadowoleni z takiego stanowiska, gdyż może pozwoli to na przekonanie rządu w Tokio do ich projektu.
      W przyjętej właśnie strategii czytamy, że CERN będzie kontynuował rozpoczęte już prace nad High Luminosity LHC (HL-LHC), czyli udoskonaloną wersją obecnego zderzacza. Budowa 100-kilometrowego tunelu i zderzacza elektronów i pozytonów ma rozpocząć się w roku 2038. Jednak zanim ona wystartuje, CERN musi poszukać pieniędzy na realizację swoich zamierzeń. Chris Llewellyn-Smith, były dyrektor generalny CERN, uważa, że do europejskiej organizacji mogłyby dołączyć Stany Zjednoczone, Japonia i Chiny, by powołać nową globalną organizację fizyczną.
      Nie wszyscy eksperci entuzjastycznie podchodzą do planów CERN. Sabine Hossenfelder, fizyk teoretyczna z Frankfurckiego Instytutu Zaawansowanych Badań krytykuje wydawanie olbrzymich kwot w sytuacji, gdy nie wiemy, czy zwiększanie energii zderzeń cząstek przyniesie jakiekolwiek korzyści naukowe poza pomiarami właściwości już znanych cząstek. Z opinią tą zgadza się Tara Shears z University of Liverpool. Uczona zauważa, że o ile powodem, dla którego budowano LHC było poszukiwanie bozonu Higgsa i urządzenie spełniło stawiane przed nim zadanie, to obecnie brak dobrze umotywowanych powodów naukowych, by budować jeszcze potężniejszy akcelerator. Nie mamy obecnie żadnych solidnych podstaw. A to oznacza, że cały projekt obarczony jest jeszcze większym ryzykiem, mówi. Dodaje jednak, że jednocześnie wiemy, że jedynym sposobem na znalezienie odpowiedzi są eksperymenty, a jedynymi miejscami, gdzie możemy je znaleźć są te miejsca, w które jeszcze nie zaglądaliśmy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wielki Zderzacz Hadronów, a dokładniej jeden z jego mniejszych eksperymentów – LHCb – zarejestrował nowy rodzaj pentakwarka oraz nigdy wcześniej nie widzianą parę tetrakwarków, w skład której wchodzi nowy typ tetrakwarka. Tym samym rodzina hadronów powiększyła się o trzech egzotycznych członków.
      Kwarki to cząstki elementarne. Zwykle kwarki łączą się w grupy po dwa lub trzy, tworząc hadrony. Z trzech kwarków składają się np. protony i neutrony tworzące jądro atomu. Czasem jednak kwarki łączą się w grupy po cztery czy pięć, wówczas mówimy o tetra- i pentakwarkach. ich istnienie przewidziano teoretycznie w tym samym czasie, co istnienie „zwykłych” hadronów. Jednak tetra- i pentakwarki obserwujemy dopiero od początku obecnego wieku.
      Większość odkrytych tetra- i pentakwarków zawiera kwark powabny i antykwark powabny, a pozostałe kwarki to kwark górny, dolny, dziwny lub ich antycząstki. Jednak w ciągu ostatnich lat naukowcy przy LHCb zaczęli rejestrować inne rodzaje egzotycznych hadronów.
      Tak jest i tym razem. Uczeni z LHCb poinformowali właśnie, że podczas rozpadu mezonów B o ładunku ujemnym, zarejestrowano pentakwarka złożonego z kwarka powabnego, antykwarka powabnego oraz kwarków górnego, dolnego i dziwnego. To pierwszy znany pentakwark zawierający kwark dziwny. Poziom ufności (σ) wynosi w przypadku tej obserwacji wynosi 15, czyli znacznie więcej niż sigma 5 przy którym fizycy mówią o odkryciu nowej cząstki.
      Drugie odkrycie to podwójnie naładowany tetrakwark o otwartym powabie, składający się z kwarka powabnego, antykwarka dziwnego, kwarka górnego i antykwarka dolnego. Towarzyszył mu neutralny tetrakwark. W przypadku tetrakwarka podwójnie naładowanego σ=6,5, a w przypadku jego towarzysza jest to 8, więc w obu przypadkach możemy mówić o odkryciu. To pierwszy raz, gdy odkryto parę tetrakwarków.
      Im więcej badań przeprowadzamy, tym więcej odkrywamy egzotycznych hadronów. To podobna sytuacja jak w latach 50. ubiegłego wieku, gdy naukowcy trafili na całe „zoo cząstek”, dzięki czemu w latach 60. mogli stworzyć kwarkowy model hadronów. Teraz tworzymy „zoo cząstek 2.0”" – powiedział koordynator projektu LHCb Niels Tuning.
      Obecnie niektóre modele teoretyczne opisują egzotyczne hadrony jako pojedyncze cząstki składające się ze ściśle powiązanych ze sobą kwarków. Natomiast według innych modeli są to pary luźno powiązanych standardowych hadronów, tworzących struktury podobne do molekuł. Dopiero kolejne badania pozwolą odpowiedzieć na pytanie, czym naprawdę są egzotyczne hadrony.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dzisiaj, po trzech latach przerwy, Wielki Zderzacz Hadronów (LHC) ponownie podejmuje badania naukowe. Największy na świecie akcelerator cząstek będzie zderzał protony przy rekordowo wysokiej energii wynoszącej 13,6 teraelektronowoltów (TeV). To trzecia kampania naukowa od czasu uruchomienia LHC.
      Przez trzy ostatnie lata akcelerator był wyłączony. Trwały w nim prace konserwatorskie i rozbudowywano jego możliwości. Od kwietnia w akceleratorze znowu krążą strumienie cząstek, a naukowcy przez ostatnich kilka tygodni sprawdzali i dostrajali sprzęt. Teraz uznali, że wszystko działa, jak należy, uzyskano stabilne strumienie i uznali, że LHC może rozpocząć badania naukowe.
      W ramach rozpoczynającej się właśnie trzeciej kampanii naukowej LHC będzie pracował bez przerwy przez cztery lata. Rekordowo wysoka energia strumieni cząstek pozwoli na uzyskanie bardziej precyzyjnych danych i daje szanse na dokonanie nowych odkryć.
      Szerokość wiązek protonów w miejscu ich kolizji będzie mniejsza niż 10 mikrometrów, co zwiększy liczbę zderzeń, mówi dyrektor akceleratorów i technologii w CERN, Mike Lamont. Uczony przypomina, że gdy podczas 1. kampanii naukowej odkryto bozon Higgsa, LHC pracował przy 12 odwrotnych femtobarnach. Teraz naukowcy chcą osiągnąć 280 odwrotnych femtobarnów. Odwrotny femtobarn to miara liczby zderzeń cząstek, odpowiadająca około 100 bilionom zderzeń proton-proton.
      W czasie przestoju wszystkie cztery główne urządzenia LHC poddano gruntowym remontom oraz udoskonaleniom ich systemów rejestracji i gromadzeniach danych. Dzięki temu mogą obecnie zebrać więcej informacji o wyższej jakości. Dzięki temu ATLAS i CMS powinny zarejestrować w obecnej kampanii więcej kolizji niż podczas dwóch poprzednich kampanii łącznie. Całkowicie przebudowany LHCb będzie zbierał dane 10-krotnie szybciej niż wcześniej, a możliwości gromadzenia danych przez ALICE zwiększono aż 55-krotnie.
      Dzięki tym wszystkim udoskonaleniom można będzie zwiększyć zakres badań prowadzonych za pomocą LHC. Naukowcy będą mogli badać bozon Higgsa z niedostępną wcześniej precyzją, mogą zaobserwować procesy, których wcześniej nie obserwowano, poprawią precyzję pomiarów wielu procesów, które mają fundamentalne znaczenie dla zrozumienia fizyki, asymetrii materii i antymaterii. Można będzie badać właściwości materii w ekstremalnych warunkach temperatury i gęstości, eksperci zyskają nowe możliwości poszukiwania ciemnej materii.
      Fizycy z niecierpliwością czekają na rozpoczęcie badań nad różnicami pomiędzy elektronami a mionami. Z kolei program zderzeń ciężkich jonów pozwoli na precyzyjne badanie plazmy kwarkowo-gluonowej, stanu materii, który istniał przez pierwszych 10 mikrosekund po Wielkim Wybuchu. Będziemy mogli przejść z obserwacji interesujących właściwości plazmy kwarkowo-gluonowej do fazy precyzyjnego opisu tych właściwości i powiązania ich z dynamiką ich części składowych, mówi Luciano Musa, rzecznik prasowy eksperymentu ALICE.
      Udoskonalono nie tylko cztery zasadnicze elementy LHC. Również mniejsze eksperymenty – TOTEM, LHCf, MoEDAL czy niedawno zainstalowane FASER i SND@LHC – pozwolą na badanie zjawisk opisywanych przez Model Standardowy oraz wykraczających poza niego, takich jak monopole magnetyczne, neutrina czy promieniowanie kosmiczne.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Doktor Agnieszka Dziurda z Instytutu Fizyki Jądrowej PAN stoi na czele międzynarodowego zespołu naukowego, który w CERN prowadzi badania nad oscylacjami cząstek pomiędzy światem materii i antymaterii. Co prawda materia i antymateria wydają się swoimi przeciwieństwami, jednak istnieją cząstki, które raz zachowują się jak należące do świata materii, a raz antymaterii. Grupa doktor Dziurdy zmierzyła właśnie ekstremalne tempo oscylacji takich cząstek.
      Naukowcy wzięli na warsztat mezony Bs0 i za pomocą detektora LHCb z niespotykaną dotychczas dokładnością zbadali ich oscylacje. Nie byli pierwszymi, którzy podjęli się tego zadania. Już w 2006 roku w amerykańskim Fermilab mierzono to zjawisko. Nam udało się teraz poprawić dokładność pierwotnego pomiaru aż o dwa rzędy wielkości, chwali się doktor Dziurda.
      Materia widzialna jest złożona głównie z kwarków górnych, dolnych, elektronów i neutrin elektronowych. Na przykład jądra atomów zbudowane są z protonów (składających się z 2 kwarków górnych i 1 kwarka dolnego) oraz neutronów (1 kwark górny i 2 kwarki dolne). Model Standardowy klasyfikuje kwark górny, dolny, elektron i neutrino elektronowe jako cząstki jednej generacji. Istnieją jeszcze dwie inne generacje, z cząstkami o podobnych właściwościach, ale coraz bardziej masywnych.
      Kwarki nie występują swobodnie. Łączą się z innymi kwarkami. A najprostsze takie połączenie tworzy mezon, złożony z par kwark-antykwark. Mezony mogą przenosić ładunek elektryczny, lecz nie muszą. Te pozbawione ładunku elektrycznego, określane jako neutralne, wykazują frapującą cechę: oscylują między postacią materialną a antymaterialną. My skupiliśmy się na analizie częstotliwości oscylacji neutralnych mezonów zawierających kwark piękny b z trzeciej generacji i kwark dziwny s z drugiej, oznaczonych jako Bs0, mówi doktor Dziurda.
      Mezony są niestabilne i rozpadają się w czasie pikosekund. Jedna pikosekunda to 0,000000000001. Jednak zgodnie z zasadami mechaniki kwantowej, produkty rozpadu neutralnych mezonów są różne, w zależności od tego, czy w momencie rozpadu znajdowały się w świecie materii czy antymaterii. Zatem dopiero po zarejestrowaniu i zidentyfikowaniu produktów rozpadu danego mezonu mogliśmy ustalić, czy rozpadł się on jako reprezentant świata materii, czy antymaterii. Połączenie tej wiedzy z informacją o naturze cząstki w momencie produkcji pozwoliło nam na pomiar częstotliwości oscylacji, stwierdza polska uczona.
      Zespół Dziurdy przeanalizował mezony Bs0 powstałe w latach 2015–2018 w Wielkim Zderzaczu Hadronów jako wynik zderzeń proton-proton o łącznej energii 13 TeV (teraelektronowoltów). Badania wykazały, że mezony te oscylują pomiędzy materią i antymaterią 3 tryliony razy na sekundę. To aż 300-krotnie szybciej niż oscylacje typowego cezowego zegara atomowego.
      Badania takie nie tylko potwierdzają przewidywania mechaniki kwantowej, ale pozwalają zawęzić też obszar poszukiwania nieznanych cząstek spoza Modelu Standardowego.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...