Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Badania kameleonów w ich naturalnym środowisku wykazały, że zmiana kolorów może być nie tylko sposobem wtopienia się w tło, ale także, a może przede wszystkim, sygnałem społecznym. W ten sposób komunikuje się np. zainteresowanie osobnikiem płci przeciwnej lub jego brak.

Devi Stuart-Fox i Adnan Moussalli z Uniwersytetu w Melbourne wybrali do badań afrykańskie kameleony karłowate. Za pomocą jaskrawych kolorów pokazujących się na boku dosłownie w mgnieniu oka samice wyrażają zainteresowanie samcem bądź odrzucenie jego zalotów, a samce sygnalizują agresję lub poddanie innemu samcowi.

Biolodzy nie wiedzieli, czemu niektóre gatunki zmieniają barwy w większym stopniu od pozostałych. Przypuszczali, że wszystko zależy od otoczenia, w jakim żyją zwierzęta. Jeśli jest różnokolorowe, kameleony powinny być w stanie wytworzyć równie imponującą paletę barw. Gdy środowisko jest raczej jednobarwne, nie ma potrzeby aż tak się wysilać. Szybko okazało się jednak, że to nieprawda...

Australijczycy zebrali samce reprezentujące 21 podgrup genetycznych kameleonów karłowatych. Zaaranżowali sytuację konfrontacji, ustawiając je naprzeciw siebie na gałęzi oraz mierzyli zachodzące na co dzień zmiany kolorów. Posługiwali się spektrometrem, ponieważ jaszczurki te widzą w ultrafiolecie. Jak podsumowuje Stuart-Fox, zależało im na ujrzeniu kameleona okiem innego kameleona. Na koniec naukowcy sprawdzili, jak postrzegają je żywiące się nimi drapieżniki: jastrzębie i dzierzby.

Okazało się, że paleta barw kameleonów nie powiększała się wraz ze wzrostem zróżnicowania otoczenia. Gatunki najbardziej zmieniające barwy wytwarzały za to najwyraźniejsze wzory. Ewolucji "chodziło" więc przede wszystkim o czytelność komunikatów społecznych, a nie o ukrywanie. Kameleony nie muszą się obawiać drapieżników, ponieważ rozbłysk na boku pojawia się i zmienia w ciągu milisekund (PLoS Biology).

Share this post


Link to post
Share on other sites
Ewolucji "chodziło" więc przede wszystkim o czytelność komunikatów społecznych, a nie o ukrywanie

 

Ewolucji "chodziło'' czy kameleonom, stworzyły system cichego obrazowego komunikowania się ,a może coś więcej bo wykorzystując grafikę i kolory  do komunikacji, używają zupełnie innych obszarów mózgu niż ludzie . 8)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Wydaje się, że delfiny butlonose używają specjalnych dźwięków na przedstawienie się innym przedstawicielom swojego gatunku. Uczeni z University of St. Andrews nagrali dźwięki wydawane przez ssaki podczas spotkania z innymi delfinami. Pozornie brzmiały one identycznie, ale szczegółowa analiza wykazała, że każdy z nich jest odmienny i żaden nie jest powtarzany przez innego delfina. Uczeni uważają, że służą one m.in. przedstawieniu się, gdyż zauważono, iż są wydawane podczas 90% spotkań pomiędzy zwierzętami. Wiadomo więc, że ogrywają ważną rolę. Zauważono też, że jeden z dźwięków, wydawany przez przywódcę grupy jest prawdopodobnie pozwoleniem na połączenie się ze spotkanym właśnie stadem. Kolejne wymieniane podczas spotkań gwizdy służą, zdaniem uczonych, ustaleniu swoich pozycji podczas wspólnego polowania.
      Komunikacja dźwiękowa jest dla delfinów niezwykle ważna, gdyż zwierzęta żyją w luźno powiązanych stadach, których wielkość ciągle się zmienia. Konieczne jest zatem ciągłe porozumiewanie się co do roli czy pozycji w stadzie.
    • By KopalniaWiedzy.pl
      US Navy wystrzeliła supernowoczesnego satelitę, który znakomicie zwiększy możliwości komunikacyjne amerykańskich sił zbrojnych. Mobile User Objective System-1 (MUOS-1). Urządzenie trafi na orbitę geostacjonarną nad Pacyfikiem i po sześciomiesięcznych testach rozpocznie pracę. MUOS będzie składał się z czterech satelitów i zastąpić obecny system komunikacji. Zapewni on 16-krotnie lepszą przepustowość danych, pozwalając na równoczesne przesyłanie głosu, obrazu i danych.
      Obecnie amerykańskie siły zbrojne wykorzystują starzejący się system UHF Follow-On (UFO). Składa się on z 10 satelitów, jednak dwa przestały działać wiele lat temu. Budowa nowego systemu komunikacyjnego stała się koniecznością także dlatego, że wojsko polega na coraz większej liczbie samolotów bezzałogowych, które zapewniają coraz większe ilości informacji.
      W skład MUOS wejdą 4 satelity i 1 zapasowy. Każdy z nich będzie wyposażony w urządzenia komunikacyjne dwojakiego rodzaju. Jeden ich zestaw będzie kompatybilny z UFO, a drugi - cyfrowy - znakomicie zwiększy możliwości komunikacyjne. MUOS korzysta m.in. z komercyjnej technologii 3G.
      Minie jeszcze kilka lat zanim MUOS zacznie w pełni działać. MUOS-2 zostanie wystrzelony w lipcu 2013 roku, a satelity 3, 4 i 5 trafią na orbitę w rocznych odstępach.
    • By KopalniaWiedzy.pl
      Występujące na Filipinach, Sumatrze i sąsiednich wyspach wyraki Tarsius syrichta są jedynymi naczelnymi, które posługują się czystymi ultradźwiękami.
      Marissa Ramsier z Uniwersytetu Stanowego Humboldta była zaskoczona, że wyraki otwierają pysk jak przy wokalizowaniu, ale nie towarzyszą temu żadne dźwięki. Badania ujawniły, że dźwięki są, tyle że niesłyszalne dla ludzi...
      Amerykanie umieszczali 6 dzikich osobników wewnątrz specjalnej komory dźwiękowej. Wykorzystano technologię opracowaną w ramach Programu Ssaczego Marynarki Wojennej USA, która mierzy odpowiedź pnia mózgu na bodźce słuchowe. Wyrakom podawano przez głośniki serię dźwięków zróżnicowanych pod względem częstotliwości i głośności. Wykorzystano także EEG. To, co wg zespołu, miało być ziewaniem, okazało się nawoływaniami o dominującej częstotliwości 70 kiloherców. Ustalono, że zakres słyszenia tych wyraków kończy się na 91 kilohercach.
      Po zakończeniu pierwszej części eksperymentu 6 wyrakom zwrócono wolność - zostały wypuszczone na wyspie Mindanao. Resztę studium przeprowadzono w naturalnych warunkach. Skoro już wiedziano, co T. syrichta słyszą, trzeba było nagrać ich komunikaty. Udało się to w przypadku 35 okazów. Dzięki temu biolodzy zauważyli, że minimalna częstotliwość sygnału wynosi 67 kiloherców.
      Posługiwanie się ultradźwiękami zapewnia kilka korzyści. Po pierwsze, ułatwia chowanie przed drapieżnikami i potencjalnymi ofiarami (karaczanami i świerszczami). Po drugie, pozwala na odfiltrowanie niskiego szumu tła - tropikalnej dżungli.
      Na czym polega wyjątkowość T. syrichta? Choć niektóre naczelne również komunikują się za pomocą ultradźwięków, nigdy nie są to czyste ultradźwięki. Odkryliśmy, że T. syrichta nie tylko słyszy najwyższe dźwięki ze wszystkich naczelnych, ale i generuje wokalizacje o najwyższej udokumentowanej w tej grupie zwierząt częstotliwości. Gatunek, który wydawał się cichy, może wydawać szereg odgłosów. Nie mieliśmy o nich pojęcia, bo są dla nas niesłyszalne.
      Wielu moich kolegów zaobserwowało ciche otwieranie pyska przez szeroki zakres gatunków. Niewykluczone, że istnieje cały zestaw sygnałów czekających na usłyszenie - ekscytuje się Ramsier.
      Antropolog podkreśla, że 4-letnie badania jej ekipy ujawniły, że nawet blisko spokrewnione naczelne bardzo różnią się pod względem wrażliwości słuchowej. Zależy to najprawdopodobniej od diety, habitatu, presji ze strony drapieżników i współzawodnictwa.
    • By KopalniaWiedzy.pl
      Jak wygląda rafa koralowa widziana oczyma ośmiornicy, krewetki i innych jej mieszkańców? Dotąd można było tylko próbować to sobie wyobrazić, ale dzięki specjalnej kamerze zbudowanej przez biologów z Uniwersytetu w Bristolu zadanie stanie się o wiele łatwiejsze.
      Zespół wybiera się w tym roku na Jaszczurzą Wyspę u wybrzeży Queensland, by zrobić serię zdjęć Wielkiej Rafy Koralowej. Liderem projektu jest dr Shelby Temple. Niektóre zwierzęta, np. ośmiornice, kraby, krewetki, a może i ryby, dostrzegają polaryzację światła. Dysponując kamerą, naukowcy będą mogli doświadczać podwodnego świata jak one.
      Kamera pozwala zmierzyć polaryzację światła. Później jest przedstawiana za pomocą zdjęć, gdzie różnym poziomom polaryzacji przypisano jakąś barwę. To trochę jak korzystanie z kamery na podczerwień, która przekształca niewidzialną dla nas podczerwień w dostrzegane przez oko kolory.
      Wstępne wyniki badań Temple'a pokazują, że polaryzacyjny wymiar podwodnego świata jest o wiele bardziej złożony, niż się dotąd wydawało. Odkryto różne sposoby komunikowania i kamuflażu, na które wcześniej byliśmy ślepi (i to dosłownie). By zrozumieć, o czym mowa, wyobraźmy sobie, jak postrzegalibyśmy rafy koralowe, gdybyśmy widzieli na czarno-biało.
      Temple podkreśla, że Park Narodowy Lizard Island to idealne miejsce do prowadzenia badań, bo można zmierzyć sygnały polaryzacyjne w każdym miejscu i środowisku, gdzie naukowcom uda się znaleźć dany gatunek zwierzęcia.
    • By KopalniaWiedzy.pl
      Wszczynając alarm, że w pobliżu czai się niebezpieczeństwo, np. wąż, szympansy biorą pod uwagę wiedzę innych członków stada. Z większym prawdopodobieństwem zaczną nawoływać, jeśli zdają sobie sprawę, że pozostałe małpy nie zauważyły obecności wroga. Nasi najbliżsi krewni muszą zatem śledzić, jakie informacje są dostępne dla innych i podejmują na tej podstawie decyzje.
      Szympansy naprawdę wydają się brać pod uwagę stan czyjejś wiedzy. Dobrowolnie [i świadomie] wydają okrzyk ostrzegawczy, aby poinformować słuchaczy o niebezpieczeństwie [...]. Z mniejszym prawdopodobieństwem powiadamiają tych, którzy już stwierdzili zagrożenie - wyjaśnia Catherine Crockford z University of St Andrews.
      Podczas eksperymentów biolodzy umieszczali na ścieżce dzikich szympansów z Ugandy model węża. Okazało się, że gdy któryś z osobników natykał się na makietę, wszczynał alarm skierowany do wszystkich w zasięgu głosu. Gdy na miejscu zjawiały się kolejne zwierzęta, szympansy powtarzały swoje zawołanie.
      Uzyskane wyniki przeczą teorii, że tylko ludzie są w stanie rozpoznać niewiedzę u innych i podać im niezbędne informacje. Od razu było oczywiste, że szympansy działają w takich sytuacjach z pobudek prospołecznych. Brytyjczycy podkreślają, że ich obserwacje wydają się tym ważniejsze, że lingwiści od dawna powtarzają, jak ważną rolę w ewolucji języka spełniła zdolność przypisania komuś stanu psychicznego. Kluczowym etapem miało być wydawanie dźwięków, by dać komuś o czymś znać. Studium z Ugandy pokazuje, że u szympansów pojawiło się więcej istotnych składników potrzebnych do rozpoczęcia złożonej komunikacji niż dotąd sądzono.
×
×
  • Create New...