Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Mikrobiom jelit jest zmieniony nawet miesiąc po udarze
dodany przez
KopalniaWiedzy.pl, w Zdrowie i uroda
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
"Świat mikrobiomu" zaczyna się operacją wyrostka robaczkowego, by płynnie przejść do kupy. Tak, tak, kupy, o której traktuje wstęp pod znamiennym tytułem „Dobre g*wno”. Jednak nie jest to książka o wyrostkach robaczkowych i kupie. A przynajmniej nie tylko.
To książka o życiu. Naszym i całej planety. O tym, jak olbrzymią rolę odgrywa mikrobiom. We wszystkich możliwych miejscach, w których występuje. Autor opowiada i o mikrobiomie skóry jelit czy płuc, jak i o mikrobiomie antarktycznych jezior. Pokazuje, jak bardzo zależymy - my, nasze zdrowie i zdrowie całego ekosystemu - od wszędobylskich mikroorganizmów. Uświadamia czytelnikowi, jak olbrzymie znaczenie ma to co je, jakim powietrzem oddycha, w jakim środowisku się obraca i w jakim klimacie przebywa. Zwraca uwagę, że wyjazd na wakacje wpływa na nasz mikrobiom, a migracja to nie tylko przemieszczanie ludzi, ale całych mikrobiomów. To rzeczy niby oczywiste, ale z tych oczywistości, które ktoś musi wypowiedzieć, byśmy je zauważyli.
Dowiadujemy się, jak mikrobiom się zmienia pod wpływem diety czy palenia papierosów i jak się starzeje. Książka to wspaniała podróż po wszechobecnym, a jednocześnie niezwykle tajemniczym, fascynującym świecie, którego istnienia na co dzień sobie nie uświadamiamy. Nauka dopiero zaczyna ten świat poznawać i już wie, że jest on bardziej złożony niż się wydawało i ma na nas większy wpływ niż moglibyśmy myśleć i chcielibyśmy przyznać. Mikrobiom decyduje nie tylko o naszym zdrowiu, ale też postępowaniu, samopoczuciu i życiowych wyborach.
Doktor James Kinross jest starszym wykładowcą chirurgii kolorektalnej w Imperial College London i od ponad 20 lat zajmuje się badaniem mikrobiomu. Szczególnie interesuje go wpływ mikrobiomu na powstawanie nowotworów i innych przewlekłych chorób jelit. O mikrobiomie potrafi opowiedzieć lekko, interesująco, zręcznie malując obraz otaczających nas połączonych ze sobą wszechświatów mikroorganizmów.
To książka dla każdego, kto chciałby dowiedzieć czegoś więcej o sobie i swoim otoczeniu. A ci, którzy chcieliby zgłębić temat, znajdą w niej setki przypisów z odniesieniami do fachowej literatury.
-
przez KopalniaWiedzy.pl
Sok z czarnego bzu może pomagać w utrzymaniu prawidłowej wagi, obniżać poziom glukozy i poprawiać pracę jelit. Badania kliniczne, przeprowadzone przez naukowców z Washington State University, pokazały, że już po tygodniu codziennego picia 350 mililitrów soku z czarnego bzu, dochodzi do pozytywnych zmian w mikrobiomie jelit, poprawy tolerancji glukozy oraz utleniania tłuszczu. Wyniki badan opublikowano na łamach pisma Nutrients.
Badania kliniczne przeprowadzono w kontrolowanych warunkach na 18-osobowej grupie dorosłych z nadwagą. Ich uczestnicy otrzymywali albo sok z czarnego bzu albo placebo o podobnym smaku i wyglądzie, przygotowane przez specjalistów z Food Innovation Lab na Uniwersytecie Karoliny Północnej.
Przeprowadzone później analizy wykazały, że u osób spożywających sok z czarnego bzu zwiększyła się ilość korzystnych bakterii w jelitach, w tym typu Firmicutes i promieniowców, a zmniejszyła ilość bakterii niekorzystnych, takich jak Bacteroidota.
Doszło też do poprawienia metabolizmu, poziom glukozy w krwi badanych spadł średnio o 24%, a poziom insuliny o 9%. Ponadto pojawiły się oznaki lepszego spalania tłuszczu. U osób, które piły sok z czarnego bzu, po wysokowęglowodanowym posiłku oraz podczas ćwiczeń zaobserwowano znaczący wzrost poziomu utlenienia tłuszczu.
Autorzy badań sądzą, że pozytywny wpływ soku z czarnego bzu związany jest z obecnością w nim dużej ilości antocyjanów. To związki z klasy flawonoidów, które spełniają wiele pożytecznych funkcji ochronnych. Są one obecne m.in. w czerwonej kapuście, winogronach czy aronii. Czarny bez zawiera ich wyjątkowo dużo.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Zdrowy sen to jeden z najważniejszych czynników warunkujących odpowiedni rozwój dzieci. Dotychczas badacze wykazali, że długość snu u dzieci jest warunkowana ich codziennymi aktywnościami, a szczególny wpływ ma tu szkoła, która narzuca rutynę, wymusza wcześniejsze kładzenie się spać i wcześniejsze wstawanie. Taka rutyna związana z wieloma korzyściami. Dzieci, które wstają wcześniej i wcześniej idą spać, mają niższe BMI, odpowiednio duża ilość snu powoduje też, że dzieci lepiej się uczą. Teraz naukowcy z Chińskiej Akademii Nauk postanowili sprawdzić, jaki wpływ ma sen na mikrobiom jelit u dzieci.
Wiemy, że mikrobiom odgrywa kluczową rolę w utrzymaniu zdrowia u ludzi. Ma wpływ na masą ciała, choroby autoimmunologiczne, cukrzycę czy zdrowie psychiczne. Na jakość mikrobiomu wpływa wiele czynników. Chińczycy chcieli przekonać się, jaki jest wpływ snu.
W badaniach wzięło udział 88 zdrowych dzieci w wieku 2-14 lat, mieszkających z na północnym zachodzie Chin. W grupie była równa liczba chłopców i dziewczynek. Przed eksperymentem wszystkie dzieci zostały poddane standardowej ocenie pediatrycznej. Dzieci i ich rodzice zostały też zbadane przez psychologów.
Dzieci miały przez 14 dni prowadzić dzienniczki snu. Badanych podzielono na 2 grupy. W jednej z nich znalazły się 44 dzieci, które chodziły spać przed 21:30, w drugiej te, które szły do łóżka po tej godzinie. Naukowcy nie zauważyli pomiędzy tymi grupami żadnej istotnej różnicy w rozkładzie płci, BMI, wieku, wadze urodzeniowej, długości ciała w chwili urodzenia, wieku rodziców, pracy pęcherza moczowego, zwyczajach żywieniowych, aktywności fizycznej i innych czynnikach.
Okazało się jednak, że dzieci, które wcześniej chodziły spać, miały bardziej zróżnicowany mikrobiom. Występowało u nich więcej mikroorganizmów należących do typów Bacteroidetes, Verrucomicrobia i Firmicutes. Wśród nich wyróżniały się rodzaje Akkermansia, Streptococcus, Alistipes i Eubacterium. U dzieci, które chodziły do łóżka przed 21:30 zaobserwowano na przykład więcej pożytecznych Akkermansia muciniphila, które utrzymują jelita w dobrym stanie i są wiązane z lepszym funkcjonowaniem poznawczym. Analizy pokazały też, że dzieci wcześniej chodzące spać charakteryzuje lepszy metabolizm aminokwasów oraz lepsza regulacja neuroprzekaźników. To kolejna wskazówka sugerująca związek pomiędzy zdrowymi jelitami, a prawidłowym funkcjonowaniem poznawczym.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Stres może spowodować, że zachorujemy, a naukowcy powoli odkrywają, dlaczego tak się dzieje. Od dłuższego już czasu wiadomo, że mikrobiom jelit odgrywa olbrzymią rolę w naszym stanie zdrowia, zarówno fizycznego, jak i psychicznego. Wiadomo też, że jelita i mózg komunikują się ze sobą. Słabiej jednak rozumiemy szlaki komunikacyjne, łączące mózg z jelitami.
Kwestią stresu i jego wpływu na mikrobiom postanowili zająć się naukowcy z Instytutu Cybernetyki Biologicznej im. Maxa Plancka w Tybindze. Skupili się na na słabo poznanych gruczołach Brunnera. Znajdują się one w dwunastnicy, gdzie wydzielają śluz zobojętniający treść żołądka, która do niej trafia. Ivan de Araujo i jego zespół odkryli, że myszy, którym usunięto gruczoły Brunnera są bardziej podatne na infekcje, zwiększyła się u nich też liczba markerów zapalnych. Te same zjawiska zaobserwowano u ludzi, którym z powodu nowotworu usunięto tę część dwunastnicy, w której znajdują się gruczoły.
Okazało się, że po usunięciu gruczołów Brunnera z jelit myszy zniknęły bakterie z rodzaju Lactobacillus. W prawidłowo funkcjonującym układzie pokarmowym bakterie kwasu mlekowego stymulują wytwarzanie białek, które działają jak warstwa ochronna, utrzymująca zawartość jelit wewnątrz, a jednocześnie umożliwiając substancjom odżywczym na przenikanie do krwi. Bez bakterii i białek jelita zaczynają przeciekać i do krwi przedostają się substancje, które nie powinny tam trafiać Układ odpornościowy atakuje te substancje, wywołując stan zapalny i choroby.
Gdy naukowcy przyjrzeli się neuronom gruczołów Brunnera odkryli, że łączą się one z nerwem błędnym, najdłuższym nerwem czaszkowym, a włókna, do którego połączone są te neurony biegną bezpośrednio do ciała migdałowatego, odpowiadającego między innymi za reakcję na stres. Eksperymenty, podczas których naukowcy wystawiali zdrowe myszy na chroniczny stres wykazały, że u zwierząt spada liczba Lactobacillus i zwiększa się stan zapalny. To zaś sugeruje, że w wyniku stresu mózg ogranicza działanie gruczołów Brunnera, co niekorzystnie wpływa na populację bakterii kwasu mlekowego, prowadzi do przeciekania jelit i chorób.
Odkrycie może mieć duże znaczenie dla leczenia chorób związanych ze stresem, jak na przykład nieswoistych zapaleń jelit. Obecnie de Araujo i jego zespół sprawdzają, czy chroniczny stres wpływa w podobny sposób na niemowlęta, które otrzymują Lactobacillus wraz z mlekiem matki.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Dokonany w ostatniej dekadzie postęp w dziedzinie rekonstrukcji i sekwencjonowania starego DNA daje nam wgląd w niedostępne wcześniej aspekty przeszłości. Ostatnim niezwykłym osiągnięciem w tej dziedzinie jest badanie mikrobiomu jamy ustnej prehistorycznych ludzi. Mikrobiomu, który wskutek radykalnej zmiany diety i stosowania antybiotyków jest u współczesnych ludzi zupełnie inny od tego, z którym ewoluowaliśmy przez dziesiątki i setki tysięcy lat. Opisanie prehistorycznego mikrobiomu pozwoli nam nie tylko lepiej poznać warunki, w jakich żyli nasi przodkowie ale może też przyczynić się do opracowania nowych metod leczenia. Dzięki rekonstrukcji dawnego mikrobiomu możemy dowiedzieć się, jakie funkcje odgrywał on w przeszłości i co w międzyczasie straciliśmy.
Naukowcy z Niemiec, USA, Hiszpanii i Meksyku zbadali kamień nazębny 12 neandertalczyków i 52 ludzi współczesnych, którzy żyli w okresie od 100 000 lat temu do czasów obecnych. Dzięki słabej higienie jamy ustnej w odkładającym się kamieniu nazębnym zachował się interesujący naukowców materiał. Jego zbadanie nie było łatwe. Współautorka badań, Christina Warinner i jej zespół przez niemal 3 lata dostosowywali dostępne narzędzia do sekwencjonowania DNA oraz programy komputerowe do pracy z fragmentami, jakie udaje się pozyskać z prehistorycznego materiału. Ich praca przypominała układanie wymieszanego stosu puzzli, na który składały się puzzle z różnych zestawów, a część z nich całkowicie zniknęła. Naukowcom zależało na sukcesie, gdyż wiedzieli, że w tym stosie znajdą nieznane dotychczas informacje. Jesteśmy ograniczeni do badań obecnie istniejących bakterii. Całkowicie ignorujemy DNA z organizmów nieznanych lub takich, które prawdopodobnie wyginęły, mówi Warinner. W końcu udało się pozyskać fragmenty kodu genetyczne ze szczątków 46 badanych ludzi.
Kamień nazębny to idealne miejsce do poszukiwania dawnych mikroorganizmów. Bez regularnego mycia zębów zostają w nim bowiem uwięzione resztki pożywienia i innej materii organicznej. Zostają one zamknięte w kamieniu i są w ten sposób chronione przed zanieczyszczeniem, gdy ciało się rozkłada. To idealne miejsce do poszukiwania niezanieczyszczonych próbek.
Badacze znaleźli w ustach badanych osób bakterie z rodzaju Chlorobium. Ich współcześni kuzyni korzystają z fotosyntezy i żyją w stojącej wodzie w warunkach beztlenowych. Nie spotyka się ich w ludzkich ustach. Wydaje się, że zniknęły stamtąd przed 10 000 lat. Naukowcy przypuszczają, że Chlorobium albo trafiło do mikrobiomu ust paleolitycznych ludzi wraz z pitą przez nich wodą z jaskiń lub też było stałym elementem mikrobiomu przynajmniej niektórych z nich.
Jednak sama rekonstrukcja materiału genetycznego bakterii to nie wszystko. Na podstawie DNA możemy odgadywać, z jakich białek zbudowana była bakteria, ale już niekoniecznie to, jakie molekuły były przez te białka wytwarzane. Dlatego też naukowcy wyposażyli Pseudomonas protegens w parę prehistorycznych genów z kamienia nazębnego. Okazało się, że geny te doprowadziły do wytwarzania furanów przez P. protegens. Współczesne bakterie wykorzystują furany do przesyłania sygnałów, a badania sugerują, że podobnie robiły bakterie prehistoryczne.
Mimo że naukowcom udało się nakłonić współczesne bakterie do ekspresji genów bakterii prehistorycznych, to nie ma tutaj mowy o ożywianiu bakterii sprzed tysiącleci. Nie ożywiliśmy tych mikroorganizmów, zidentyfikowaliśmy za to kluczowe geny, które służyły im do wytwarzania interesujących nas molekuł, wyjaśnia Warinner.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.