Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Pasy utrudniają kontrolowane lądowanie
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
NASA poinformowała o opóźnieniu dwóch kolejnych misji załogowych, jakie mają się odbyć w ramach programu Artemis. Artemis II, w ramach której ludzie mają polecieć poza orbitę Księżyca, została przesunięta z września 2025 na kwiecień 2026, a lądowanie człowieka na Księżycu – Artemis III – przesunięto z końca 2026 na połowę 2027. Opóźnienie związane jest z koniecznością dodatkowych prac przy osłonie termicznej kapsuły załogowej Orion.
Decyzję o opóźnieniu podjęto po zapoznaniu się z wnioskami ze śledztwa w sprawie niespodziewanej utraty przez osłonę Oriona części niecałkowicie spalonego materiału w czasie wchodzenia w atmosferę Ziemi podczas bezzałogowej misji Artemis I. Mimo to misja Artemis II zostanie przygotowana z wykorzystaniem osłony już zamocowanej do Oriona. Badania wykazały bowiem, że osłona dobrze zabezpieczy pojazd oraz załogę. NASA zmieni jednak nieco trajektorię lądowania, by zmniejszyć obciążenie osłony. A trzeba przyznać, że musi ona wiele wytrzymać. Jej zadaniem jest uchronienie kapsuły przed temperaturami dochodzącymi do 2700 stopni Celsjusza, jakie pojawiają się w wyniku tarcia o atmosferę. Po wejściu w nią pojazd pędzi z prędkości ponad 40 tysięcy km/h i za pomocą siły tarcia zostaje spowolniony do ponad 500 km/h. Dopiero przy tej prędkości rozwiną się spadochrony i kapsuła łagodnie wyląduje na powierzchni Pacyfiku.
Przez kilka ostatnich miesięcy NASA i niezależny zespół ekspertów szukali przyczyn, dla których podczas misji Artemis I niecałkowicie spalony materiał z osłony uległ zużyciu w inny sposób, niż przewidziany. Przeprowadzono ponad 100 różnych testów, które wykazały, że gazy, powstające wewnątrz materiału osłony w wyniku oddziaływania wysokiej temperatury, nie mogły wystarczająco szybko się ulatniać, co spowodowało popękanie części materiału i jego odpadnięcie. Mimo tego osłona spełniała swoje zadanie. Czujniki wewnątrz kapsuły wykazały, że temperatura pozostała stabilna i komfortowa dla człowieka.
Teraz, na podstawie badań osłony z misji Artemis I, inżynierowie przygotowują osłonę dla misji Artemis III, dbając o to, by gazy mogły z niej równomiernie uchodzić. Zanim jednak dojdzie do misji Artemis III, wystartuje Artemis II, w ramach której ludzie odlecą od Ziemi na największą odległość w historii. Zadaniem tej 10-dniowej misji będzie przetestowanie systemów podtrzymywania życia, sprawdzenie mechanizmów ręcznego sterowania kapsułą oraz zbadanie, w jaki sposób astronauci wchodzą w interakcje z urządzeniami kapsuły.
Dotychczas kapsuła Orion dwukrotnie opuszczała Ziemię. Po raz pierwszy w 2014 roku, gdy na krótko trafiła na orbitę i po raz drugi w roku 2022, gdy w ramach 25-dniowej misji bezzałogowej NASA wysłała ją na orbitę Księżyca.
Przesunięcie misji Artemis III zwiększa też prawdopodobieństwo, że kolejne opóźnienia nie będą konieczne. Podczas misji bowiem wykorzystany zostanie górny człon rakiety Starship firmy SpaceX, który posłuży do lądowania na Księżycu. Starship jest wciąż rozwijana, dotychczas przeprowadzono jedynie 6 jej testów. Decyzja NASA o opóźnieniu misji daje więc przy okazji firmie Elona Muska więcej czasu na dopięcie wszystkiego na ostatni guzik.
Pomimo opóźnienia USA wciąż wyprzedzają Chiny pod względem najbliższej planowej misji załogowej na Księżyc. Państwo Środka chce bowiem wysłać astronautów na Srebrny Glob około 2030 roku. Ten pośpiech ma podłoże nie tylko ambicjonalne. NASA chce być pierwsza po to, by Chiny nie mogły ustalać zasad pracy na Księżycu. Obecny szef NASA twierdzi bowiem, że nie można wykluczyć, iż gdyby pierwsi wylądowali Chińczycy, to mogliby spróbować zakazać lądowania innym w tym samym regionie.
Oba kraje planują lądowanie w pobliżu południowego bieguna Srebrnego Globu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Mrówki Solenopsis richteri posługują się piaskiem jak narzędziem, by pozyskać ciekły pokarm (roztwór cukru), nie tonąc w nim. Autorzy artykułu z pisma Functional Ecology podkreślają, że to pokazuje, że dostosowują strategię korzystania z narzędzi do ryzyka związanego z żerowaniem.
S. richteri pochodzą z Ameryki Południowej. Po introdukcji do południowych USA są tu uznawane za gatunek inwazyjny.
Gdy mrówkom zapewniono niewielkie pojemniczki z roztworem cukru, dzięki hydrofobowemu egzoszkieletowi były w stanie unosić się na powierzchni i żerować. Gdy jednak naukowcy zmniejszyli napięcie powierzchniowe, S. richteri zaczęły przenosić piasek, by spuścić ciecz z naczynia.
Odkryliśmy, że mrówki budują strukturę z piasku, która skutecznie wyciąga ciecz z pojemnika, tak aby później można ją było zebrać - opowiada dr Aiming Zhou z Huazhong Agricultural University. Ta niesamowita umiejętność nie tylko zmniejszała ryzyko utonięcia, ale i zapewniała większą powierzchnię do zbierania roztworu.
Okazało się, że struktury z piasku były tak skuteczne, że w ciągu 5 minut mogły wyciągać z pojemniczków niemal połowę cieczy.
Naukowcy zmieniali napięcie powierzchniowe za pomocą surfaktantu. Gdy jego stężenie wynosiło ponad 0,05%, co przekładało się na znaczące ryzyko utonięcia, mrówki budowały struktury z piasku. Nie tworzyły ich, żerując na czystym roztworze cukru. Podczas eksperymentów owadom dostarczano piasek o różnej wielkości ziaren; w ten sposób można było określić ich preferencje budowlane w takiej sytuacji.
Wiemy, że niektóre gatunki mrówek są w stanie posługiwać się narzędziami, szczególnie przy zbieraniu ciekłego pokarmu. Byliśmy jednak zaskoczeni niesamowitymi umiejętnościami S. richteri w tym zakresie - dodaje dr Jian Chen, entomolog z amerykańskiego Departamentu Rolnictwa.
Dr Zhu podkreśla, że konieczne są dalsze badania. Nasze eksperymenty były prowadzone w laboratorium i dotyczyły wyłącznie S. richteri. Kolejnym krokiem powinno być ustalenie, jak bardzo zachowanie to jest rozpowszechnione u innych gatunków mrówek.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Jutro na powierzchni Marsa ma wylądować łazik Perseverance ze śmigłowcem Ingenuity na pokładzie. To najbardziej skomplikowana misja kosmiczna od czasu lądowania człowieka na Księżycu. W chwili pisanie tego tekstu misja Mars 2020 znajduje się w odległości około 2 milionów 500 tysięcy kilometrów od Marsa i pędzi w jego stronę z prędkością 76 941 km/h. Łazik ma dotknąć powierzchni Marsa jutro, 18 lutego, o godzinie 21:55 czasu polskiego.
Wyprawy na Marsa są niezwykle trudne. Dotychczas ludzkość przeprowadziła 47 misji, z czego całkowicie lub częściowo udanych było 24, w tym 16 zorganizowanych przez USA, 3 przez ZSRR, 1 wspólna UE/Rosja oraz po 1 przez UE, Indie, Zjednoczone Emiraty Arabskie i Chiny.
Jak dotychczas jedyną agencją, która potrafi przeprowadzić pełną misję wraz z miękkim lądowaniem na Marsie jest NASA. Co prawda w 1971 roku na Czerwonej Planecie miękko lądował radziecki Mars 3, jednak kontakt z nim utracono już 104,5 sekundy później. Najprawdopodobniej udało się też wylądować Beagle'owi 2 wysłanemu przez Europejską Agencję Kosmiczną w 2003 roku, jednak nigdy nie nawiązano z nim kontaktu. Amerykanie próbowali lądować na Marsie 9-krotnie, z czego 8 razy im się udało. Nic więc dziwnego, że istnieje spore prawdopodobieństwo, że uda się i tym razem.
Misja Mars 2020 wygląda podobnie do misji łazika Curiosity z 2011 roku. Jednak to tylko pozory. Łazik Perseverance jest najcięższym obiektem, jaki ludzkość próbowała umieścić na Marsie. Jego masa to 1025 kilogramów. NASA postanowiła przy okazji wypróbować nową osłonę termiczną, która podczas lądowania nie tylko ochroni lądujący pojazd, ale zbierze też więcej danych na temat temperatury, wiatru i rozgrzewania się osłony.
Nowością jest też wspomagający lądowanie system TRN, który będzie w czasie rzeczywistym wykonywał zdjęcia terenu i na tej podstawie zdecyduje o ostatecznym punkcie lądowania. Dzięki niemu łazik można posadowić znacznie bardziej precyzyjnie, a przygotowujący misję specjaliści mieli większy wybór miejsca lądowania.
Na pokładzie Perseverance znalazł się śmigłowiec Ingenuity. To pierwszy wysłany przez człowieka obiekt, który ma latać w atmosferze Marsa. Tego typu drony mogą przydać się w przyszłości podczas misji bezzałogowych i załogowych. Będą mogły bowiem służyć do szybkich zwiadów w okolicy.
Po raz pierwszy w historii na Marsa wysłano też... fragmentu marsjańskich skał, które posłużą do kalibracji urządzeń badawczych łazika. Na powierzchnię Czerwonej Planety mają trafić fragmenty kombinezonów kosmicznych zaprojektowanych dla misji załogowych na Księżyc i Marsa. Z jednej strony, dzięki dobrze znanemu składowi, posłużą one do kalibracji urządzeń łazika. Z drugiej zaś będzie można zbadać, jak warunki panujące na Marsie wpływają na kombinezony.
Jednak głównym zadaniem misji jest poszukiwanie śladów dawnego życia. Dlatego też na miejsce lądowania wybrano Krater Jezero. Naukowcy sądzą, że w przeszłości płynęła tam rzeka, która wpadała do jeziora. Jeśli gdzieś można znaleźć ślady życia, to właśnie tam. Dlatego też wybór padł na to miejsce, mimo iż jest to najtrudniejszy z dotychczas wybranych obszarów do lądowania na Czerwonej Planecie.
Gdy Mars 2020 dotrze do Marsa, czeka nas słynne 7 minut horroru. To tytuł filmu, w którym NASA opisywała, w jaki sposób będzie lądował łazik Curiosity. Nazwa bierze się stąd, że od momentu wejścia pojazdu w atmosferę Marsa do chwili lądowania Curiosity minęło 7 minut. Tymczasem sygnał z Marsa na Ziemię biegnie 14 minut. Podobnie będzie w przypadku misji Mars 2020. Oznacza to, że w momencie, gdy NASA odbierze sygnał, iż lądujący pojazd wszedł w atmosferę Marsa łazik od 7 minut może leżeć roztrzaskany na powierzchni planety. Minie kolejnych 7 minut, zanim otrzymamy sygnał o lądowaniu. I to właśnie są te minuty horroru.
Lądowanie Perseverance można będzie śledzić na NASA TV. Sekwencja lądowania będzie wyglądała następująco:
– o godzinie 21:38 czasu polskiego moduł lądujący z łazikiem oddzieli się od pojazdu Mars 2020,
– o 21:48 nastąpi wejście w atmosferę Marsa. Odbędzie się ono z prędkością około 19 500 km/h,
– o 21:49 osłona termiczna rozgrzeje się do maksymalnej temperatury ok. 1300 stopni Celsjusza,
– ok. 21:52 przy prędkości wciąż przekraczającej prędkość dźwięku zostaną rozwinięte spadochrony, dokładny czas ich rozwinięcia będzie korygowany na bieżąco przez komputer pokładowy,
– 20 sekund po rozwinięciu spadochronów odłączona zostanie dolna osłona termiczna, dzięki czemu łazik będzie mógł włączyć radary i skorzystać z technologii precyzyjnego lądowania,
– o 21:54, gdy zostanie wybrane dokładne miejsce lądowania, łazik wraz z przymocowanym do niego „plecakiem rakietowym” odłączy się od tylnej osłony i spadochronów, a przymocowane do „plecaka” silniki spowolnią pojazd i pokierują go na miejsce lądowania,
– całość przybędzie na miejsce lądowania, a łazik z wysokości 20 metrów zostanie opuszczony na linach rozwijanych przez „plecak” i o godzinie 21:55 wyląduje na powierzchni Marsa. Liny zostaną zwolnione, a „plecak” odleci na bezpieczną odległość i rozbije się na powierzchni planety.
NASA zastrzega, że centrum kontroli misji – w związku ze złożonością komunikacji na takie odległości – może nie być w stanie na bieżąco potwierdzać poszczególnych etapów lądowania. Przypomina przy tym, że łazik jest w stanie wylądować w pełni autonomicznie, bez potrzeby komunikacji z Ziemią.
Po wylądowaniu jednym z pierwszych zadań łazika będzie wykonanie zdjęć otoczenia i przesłanie ich na Ziemię.
Poniżej prezentujemy film wyjaśniający, jak będzie przebiegało lądowanie Perseverance.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W końcu udało się przeprowadzić testowy lot Starship SN8. Lot, który zakończył się spektakularną eksplozją rakiety. Nie było to jednak zbyt wielkim zaskoczeniem. Oceniano bowiem, że szanse, iż rakieta wyląduje nietknięta wynoszą około 30%.
Starship SN8 wystartował wczoraj o godzinie 23:45 czasu polskiego z ośrodka testowego SpaceX w pobliżu wsi Boca Chica w Teksasie. Jego celem było osiągnięcie wysokości 12,5 kilometra, wykonanie kilku skomplikowanych manewrów – w tym odwrócenie się poziomo w celu spowolnienia opadania – powrót do pozycji pionowej i pionowe lądowanie. SN8 wykonał wszystkie zadania, z wyjątkiem ostatniego. W 6 minut i 42 sekundy po starcie doszło do wielkiej eksplozji na lądowisku. Wszystko wskazuje na to, że Starship miał podczas lądowania zbyt dużą prędkość.
Firma SpaceX uznała jednak test za sukces. Podczas lądowania ciśnienie w zbiorniku paliwowym na szczycie rakiety było zbyt niskie, przez co silniki nie wyhamowały pojazdu do odpowiedniej prędkości. Mamy jednak wszystkie dane, jakich potrzebowaliśmy. Gratulacje dla całego zespołu SpaceX, napisał na Twitterze Elon Musk. Niedługo potem dodał: Marsie, przybywamy!.
Wczorajszy test był najbardziej skomplikowany ze wszystkich dotychczasowych testów Starship. Wcześniej pojazdy te (Starhopper, SN5 i SN6) osiągały wysokość około 150 metrów. Były prostymi konstrukcjami, wyposażonymi w jeden silnik Raptor. SN8 to znacznie bardziej skomplikowany pojazd, o większych możliwościach. Korzysta on z trzech Raptorów, wyposażony jest w klapy i nos. Wszystkie te nowe elementy spisały się na medal, zapewnił Musk. Udane wznoszenie, przełączenie na górny zbiornik, precyzyjna praca klap, które naprowadziły rakietę na lądowisko, cieszył się założyciel SpaceX.
Pojazdy Starships mają w przyszłości latać na Księżyc, Marsa i w inne miejsca. Docelowo cały system będzie składał się dwóch zasadniczych elementów – pojazdu Starship, który w przyszłości będzie wyposażony w sześć silników Raptor oraz z olbrzymiej rakiety SuperHeavy, napędzanej około 30 silnikami. Oba elementy mają być wielokrotnego użytku, oba konstruowane są tak, by po starcie i lądowaniu były szybko gotowe do kolejnego startu.
SpaceX chce, by Starship i SuperHeavy były wkrótce gotowe do regularnych lotów. Musi być to nieodległa perspektywa, gdyż NASA rozważa wykorzystanie Starship podczas załogowej misji na Księżyc. Elon Musk ogłosił niedawno, że SpaceX zorganizuje pierwszą załogową misję na Marsa już w roku 2026, szybko jednak dodał, że jeśli będziemy mieli szczęście, to misja taka odbędzie się już w roku 2024.
Jeśli traktować te zapewnienia poważnie, to kolejne loty Starship muszą odbywać się często. Wiemy, że Starship SN9jest już niemal gotowa. Trwają też prace nad wersją SN10. Obie wersje będą bardzo podobne do SN8, mają jednak zawierać sporo niewielkich usprawnień. Duże zmiany przewidziane są w wersji SN15.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Zwykle węże połykają swoje ofiary w całości. Wąż Oligodon fasciolatus wyewoluował jednak inną makabryczną strategię. Podczas badań w Tajlandii naukowcy udokumentowali 3 sytuacje, gdy O. fasciolatus rozpruwały żywcem ropuchy Duttaphrynus melanostictus i wyrywały im narządy wewnętrzne. Wyniki badań zespołu Henrika Bringsøe ukazały się w piśmie Herpetozoa.
O. fasciolatus rozrywały brzuch ofiary zębami, a potem wkładały do środka całą głowę. Ropuchy usiłowały się wyrwać i uniknąć wypatroszenia, ale za każdym razem ich próby okazywały się daremne.
Wg naukowców, strategia O. fasciolatus może być związana z tym, że ropuchy D. melanostictus uwalniają z gruczołów zausznych silną toksynę. Niewykluczone więc, że węże zaczęły stosować brutalną strategię żerowania, by uniknąć otrucia.
Jeden z opisanych przypadków miał miejsce w 2016 r., reszta w br. W 2016 r. w momencie pojawienia się obserwatorów ropucha była już martwa, ale teren wokół pokrywała krew, co oznacza, że ropucha zginęła po walce. Wąż dostał się do środka przez ranę pod lewą przednią kończyną. Wsadził do środka głowę i systematycznie usuwał narządy wewnętrzne. Pocięte na mniejsze kawałki połykał. W kwietniu 2020 r. rozegrała się bitwa, która trwała niemal 3 godziny. Nim pojawili się naukowcy, O. fasciolatus zdążył już wsadzić głowę do wnętrza ropuchy. Mimo urazu D. melanostictus przesuwała się w kierunku bajorka. Zatrzymała się dopiero na brzegu. W pewnym momencie wąż wysunął łeb; prawdopodobnie chciał zaczerpnąć powietrza. Ropucha spryskała go toksyczną wydzieliną; jej część wylądowała na głowie drapieżnika. Poza tym pewna ilość cieczy spłynęła z ropuchy, skapując na głowę i do oczu węża. D. melanostictus zdołała wtedy odskoczyć. Wąż ocierał głowę o podłoże, m.in. o opadłe liście, próbując pozbyć się toksyny. Uciekł pod stertę drewna. Po 10 min wypełzł i ponownie udał się w pościg za ropuchą. Ropucha przemieściła się 2,5 m w kierunku bajorka, ale wąż chwycił ją za tylną kończynę. Gdy toksyczna wydzielina pojawiła się w okolicy grzbietowej ropuchy, jej część ponownie dostała się do oczu napastnika, który znów wycofał się i zaczął się czyścić. W tym czasie ropucha wskoczyła do wody. Wypłynęła na brzeg i przez pół godziny próbowała się chować pod kłodą. W tym czasie O. fasciolatus również przebywał pod pobliską kłodą, ciągle próbując się oczyścić. Później zaatakował ostatni raz. Przez utworzoną wcześniej ranę wyrwał zapadnięte płuco, tkankę mięśniową i prawdopodobnie tkankę tłuszczową D. melanostictus. Choć ofiara się nie ruszała, nadal oddychała. Metoda ekstrahowania i połykania narządów była taka sama, jak zaobserwowana w 2016 r. W czerwcu 2020 r. wąż obrał na cel środek brzucha. Myśliwy naciął skórę, by zyskać dostęp do organów wewnętrznych. Następnie porzucił zdobycz, aby pojawić się ponownie po ok. 5 godz. i zakończyć żerowanie na narządach martwej ropuchy.
W czwartym opisanym przez zespół przypadku dorosły wąż zaatakował mniejszy okaz ropuchy. Tym razem D. melanostictus została jednak połknięta w całości. Dlaczego? Tego na razie nie wiadomo. Jedna z hipotez jest taka, że mniejsze ropuchy są mniej toksyczne od dorosłych egzemplarzy. Z drugiej strony badacze dopuszczają wyjaśnienie, że węże są oporne na toksynę ropuchy, a przyczyną zachowania zaobserwowanego w pozostałych 3 przypadkach są gabaryty dorosłych ropuch (nie da się ich połknąć w całości).
Obecnie nie możemy odpowiedzieć na te pytania, ale kontynuujemy obserwacje i raportowanie na temat tych fascynujących węży. Mamy nadzieję, że odkryjemy kolejne interesujące aspekty ich biologii - podsumowuje Bringsøe.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.