Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Tajemnicza Krowa wciąż stanowi zagadkę dla astronomów

Rekomendowane odpowiedzi

Krowa, niezwykle jasne światło na niebie, wciąż dzieli naukowców, którzy nie wiedzą, jaka jest natura tajemniczego zjawiska.
Obiekt AT2018cow, nazwany nieoficjalnie Krową (Cow) został po raz pierwszy zaobserwowany 16 czerwca 2018 roku. Pojawił się nagle i znikąd w niewielkiej galaktyce odległej o około 200 milionów lat świetlnych. Krowa jest bardzo jasna, a jej gwałtowne pojawienie się świadczy o tym, że nie jest to supernowa, gdyż te wolniej zyskują na jasności.

Początkowo sądzono, że Krowa znajduje się znacznie bliżej, niewykluczone, że w Drodze Mlecznej. Pojawiły się przypuszczenia, że mamy do czynienia z białym karłem, który pochłania materiał pobliskiej gwiazdy i okresowo rozbłyska. Takie wydarzenia są częste w naszej galaktyce. Jednak analiza spektrum światła Krowy wykazała, że znajduje się ona znacznie dalej, w innej galaktyce, i to w odległości, z której rozbłyskujący biały karzeł nie byłby widoczny.

Już pierwsze obserwacje pokazały, jak bardzo niezwykły jest to obiekt. Brak mu cech charakterystycznych supernowej. Ponadto zyskiwał na jasności i pozostał bardzo jasnym przez niemal 3 tygodnie. Supernowe zwykle się tak nie zachowują, mówi Daniel Perley, astronom z Liverpool John Moores University.

Gdy tylko odkryto, w jakiej odległości leży Krowa, Liliana Rivera Sandoval z Texas Tech University postarała się o dostęp do należącego do NASA Neil Gehrels Swift Observatory, by zobaczyć, jak obiekt wygląda w ultrafiolecie i promieniach rentgenowskich. Okazało się, że emisja w obu zakresach jest bardzo jasna. Ponadto, chociaż jasność promieniowania rentgenowskiego początkowo się zmieniała, to jego spektrum nie ulegało zmianie, nie ewoluowało, co jest czymś niezwykłym, stwierdziła Sandoval. Po 3 tygodniach zakres zmian promieniowania X zwiększył się i spadła też jego jasność.

Naukowcy zgadzają się, że długotrwałość tego wydarzenia wskazuje, że po początkowym rozbłysku coś je napędzało. Nie wiadomo jednak co. Niektórzy uważają, że mogła być to niezwykła supernowa, której jądro zapadło się już po eksplozji. Zdaniem innych, byliśmy świadkami rozerwania gwiazdy przez czarną dziurę Jednak takie wydarzenie zwykle wymaga obecności supermasywnej czarnej dziury, takiej, jakie znajdują się w centrach galaktyk, tymczasem Krowa pojawiła się w ramieniu galaktyki spiralnej. Część uczonych stwierdziła więc, że znajduje się tam średnio masywna czarna dziura. Jednak brak jednoznacznych dowodów na istnienie takich dziur. Każda z hipotez ma swoje słabe strony, przyznaje Sandoval.

Jakby jeszcze tych tajemnic było mało, warto wspomnieć o obserwacjach przeprowadzonych przez Annę Ho z California Institute of Technology. Pani Ho użyła Submilimeter Array na Mauna Kea. Obiektów eksplodujących zwykle nie obserwuje się w zakresie fal milimetrowych, gdyż fale zanikają krótko po eksplozji i zwykle nie udaj się ich uchwycić. Tym razem było inaczej. Po kilkunastu dniach Krowa nadal jasno świeciła w tym zakresie. Po raz pierwszy udało mi się zaobserwować takie fale z takiego źródła, mówi Ho. Podobnie do innych zakresów, Krowa długo świeciła w spektrum milimetrowym, a później emisja zaczęła zanikać. Ho uważa, że emisja pochodziła z fali uderzeniowej wywołanej przez obiekt eksplodujący w otoczeniu pyłu i gazu. Nagły spadek emisji był spowodowany wyjściem fali poza granicę gazu i pyłu.

Naukowcy nie potrafią więc jednoznaczne wyjaśńić, czym była Krowa. Mają więc nadzieję, że trafią na więcej takich zdarzeń, dzięki czemu uda się je zbadać.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W Kwintecie Stephana, na galaktycznym skrzyżowaniu, w którym dawne kolizje galaktyk pozostawiły po sobie liczne szczątki, dochodzi właśnie do kolejnego zderzenia. Bierze w nim udział galaktyka pędząca z prędkością 3,2 milionów km/h. Kolizję, w bezprecedensowej rozdzielczości, zaobserwował międzynarodowy zespół naukowy korzystający z William Herschel Telescope Enhaced Area Velocity Explorer (WEAVE). To supernowoczesny spektrograf, zamontowany przed dwoma laty na William Herschel Telescope na Wyspach Kanaryjskich.
      Zderzenie zostało spowodowane przez galaktykę NGC 7318b, która przedziera się przez Kwintet. W jego efekcie powstała potężna fala uderzeniowa, podobna do fali, jaka ma miejsce, gdy samolot przekracza barierę dźwięku.
      Kwintet Stephana został odkryty około 150 lat temu. To grupa powiązanych ze sobą grawitacyjnie pięciu galaktyk. Cztery z nich znajdują się w odległości około 290 milionów lat świetlnych od nas, piąta położona jest w odległości 40 milionów lś. Kwintet jest idealnym naturalnym laboratorium służącym do badań interakcji pomiędzy galaktykami. Nic więc dziwnego, że stał się pierwszym celem obserwacyjnym WEAVE.
      Doktor Marina Arnaudova z University of Hertfordshire, która stoi na czele grupy badawczej, mówi, że Kwintet nie tylko doświadcza kolejnego w swej historii potężnego zderzenia, ale dzięki niemu astronomowie odkryli podwójną naturę fali uderzeniowej. W miarę, jak wędruje ona przez zimy gaz, ma prędkość hipersoniczną, w medium międzygalaktycznym Kwintetu porusza się z prędkością kilkunastokrotnie większą od prędkości dźwięku. Fala jest tak potężna, że wyrywa elektrony z atomów, pozostawiając za sobą świecący gaz, który obserwujemy za pomocą WEAVE. Jednak gdy fala przechodzi przez otaczający Kwintet gorący gaz, staje się znacznie słabsza. Zamiast dokonywać w nim zniszczeń, fala kompresuje gaz, co prowadzi do pojawienia się emisji w zakresie fal radiowych, którą rejestrują radioteleskopy, takie jak Low Frequency Array (LOFAR), doaje doktorant Soumyadeep Das.
      Nowe, niezwykle szczegółowe informacje, zebrano dzięki połączeniu danych z WEAVE, LOFAR, Very Large Array i Teleskopu Jamesa Webba. Eksperci są przede wszystkim zachwyceni możliwościami WEAVE. Maja nadzieję, że nowy instrument zrewolucjonizuje naszą wiedzę o wszechświecie. Już ta pierwsza praca naukowa powstała za jego pomocą pokazała, jak wielki potencjał tkwi w spektrografie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Sonda Gaia odkryła 55 gwiazd, które z dużą prędkością zostały wyrzucone z gromady R136, znajdującej się Wielkim Obłoku Magellana, galaktyce satelitarnej Drogi Mlecznej. Odkrycie oznacza, że liczba gwiazd uciekających z gromady jest 10-krotnie większa niż dotychczas przypuszczano. Do wyrzucenia gwiazd może dochodzić w młodych gromadach w wyniku bliskich spotkań znajdujących się tam nowo narodzonych gwiazd.
      Naukowcy z Uniwersytetów w Lejdzie, Amsterdamie i Uniwersytetu Radbound odkryli, że młoda gromada R136 w ciągu około 2 milionów lat pozbyła się nawet 1/3 z najbardziej masywnych gwiazd. Zostały one wyrzucone z gromady z prędkością przekraczającą 100 000 km/h. Niektóre z nich dotarły na odległość nawet 1000 lat świetlnych, zanim zakończyły życie jako supernowe.
      Zaskakująca była nie tylko duża liczba gwiazd i ich prędkość, ale również fakt, że doszło do dwóch epizodów ich wyrzucania. Pierwsze takie wydarzenie miało miejsce około 1,8 miliona lat temu, gdy gromada powstała. Epizod ten odpowiada wydarzeniom, jakie mają miejsce podczas powstawania gromad gwiazd. Jednak do drugiego wyrzucenia gwiazd doszło zaledwie 200 000 lat temu i wydarzenie to ma zupełnie inną charakterystykę. Na przykład gwiazdy wyrzucone podczas drugiego epizodu poruszają się wolniej i nie zostały wystrzelone w przypadkowych kierunkach, wyjaśnia doktorant Mitchel Stoop, który stał na czele grupy badawczej.
      Zdaniem naukowców do drugiego epizodu doszło w wyniku interakcji R136 z inną gromadą, którą odkryto w 2012 roku. Ten drugi epizod może być sygnałem, że w niedługiej przyszłości dojdzie do połączenia się obu gromad.
      Masywne gwiazdy szybko kończą życie jako supernowe. Zwykle istnieją kilka milionów lat i eksplodują w tych samych regionach, w których się narodziły. R136 to wyjątkowa gromada. Zawiera setki tysięcy gwiazd, w tym i takie o masie do 300 mas Słońca. Stanowi on część wielkiego regionu formowania gwiazd o średnicy 5 milionów lat świetlnych. Nigdy wcześniej nie odnotowano też, by tak duża liczba szybko poruszających się gwiazd opuszczała tę samą gromadę.
      Teraz, gdy zaobserwowaliśmy, że 1/3 masywnych gwiazd została wyrzucona z obszaru, w którym powstały – a tym samym zaczęły one wywierać wpływ na dalsze regiony – możemy przypuszczać, że wpływ masywnych gwiazd na ewolucję i strukturę galaktyk jest większy, niż dotychczas sądziliśmy. Możliwe nawet, że takie uciekające gwiazdy narodzone we wczesnym wszechświecie miały ważny udział w procesie rejonizacji, kiedy rozproszony wodór został ponownie zjonizowany, stwierdza współautor badań, Lex Kaper.
      Gaia znajduje się w odległości 1,5 miliona kilometrów od Ziemi. Zadaniem sondy jest precyzyjne określanie pozycji, prędkości i kierunku ruchu ponad miliarda gwiazd. Holenderscy naukowcy chcieli przetestować możliwości teleskopu, więc na obiekt badań wybrali R136, który leży w odległości 160 000 lat świetlnych od Ziemi. To granica możliwości Gai. R136 powstała niedawno, więc wystrzelone z niej gwiazdy znajdują się tak blisko, że bardzo trudno jest je zidentyfikować. Jeśli jednak znajdzie się wystarczająco dużo takich gwiazd, można przeprowadzić wiarygodne modelowanie statystyczne, wyjaśnia Alex de Koter. Gaia spisała się wyjątkowo dobrze, dostarczając danych, które zaskoczyły naukowców.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wiele z odkrytych dotychczas czarnych dziur jest częścią układu podwójnego. Układy takie składają się z krążących wokół siebie czarnej dziury oraz innego obiektu – jak gwiazda, gwiazda neutronowa czy druga czarna dziura. Astronomowie z MIT-u i Caltechu poinformowali właśnie o zaskakującym odkryciu. Jedna z najlepiej przebadanych czarnych dziur, klasyfikowana jako część układu podwójnego, okazała się wchodzić w skład układu potrójnego.
      Dotychczas sądzono, że czarnej dziurze  V404 Cygni towarzyszy jedynie sąsiednia gwiazda. Obiega ona dziurę w ciągu 6,5 doby, to tak blisko, że V404 Cygni wciąga materiał z gwiazdy.Ku zdumieniu badaczy okazało się jednak, że wokół czarnej dziury krąży jeszcze jedna gwiazda.
      Ten drugi z towarzyszy znajduje się w znacznie większej odległości. Gwiazda obiega dziurę w ciągu 70 000 lat. Sam fakt, że czarna dziura wywiera wpływ grawitacyjny na tak odległy obiekt każe zadać pytania o jej pochodzenie. Czarne dziury tego typu powstają w wyniku eksplozji supernowej. Badacze zauważają jednak, że gdyby tak było w tym przypadku, to energia wyemitowana przez gwiazdę przed jej zapadnięciem się, eksplozją i utworzeniem czarnej dziury, wyrzuciłaby w przestrzeń kosmiczną każdy luźno powiązany z nią obiekt. Zatem tej drugiej gwiazdy, bardziej odległej od czarnej dziury, nie byłoby w jej otoczeniu.
      Dlatego też badacze uważają, że zaobserwowana przez nich czarna dziura powstała w wyniku bezpośredniego zapadnięcia się gwiazdy, w procesie, który nie doprowadził do pojawienia się supernowej. To znacznie bardziej łagodna droga tworzenia się czarnych dziur. Sądzimy, że większość czarnych dziur powstaje w wyniku gwałtownej eksplozji gwiazd, jednak to odkrycie poddaje tę drogę w wątpliwość. To bardzo interesujący układ z punktu badania ewolucji czarnych dziur. I każe zadać sobie pytanie, czy istnieje więcej układów potrójnych, mówi Kevin Burdge z MIT-u.
      Odkrycia dokonano przypadkiem. Naukowcy analizowali bazę Aladin Lite, repozytorium obserwacji astronomicznych wykonanych przez różne teleskopy naziemne i kosmiczne. Wykorzystali automatyczne narzędzie, by wyodrębnić z bazy obserwacje dotyczące tych samych fragmentów nieboskłonów. Szukali w nich śladów nieznanych czarnych dziur. Z ciekawości Burdge zaczął przyglądać się V404 Cygni. To czarna dziura znajdująca się w odległości 8000 lat od Ziemi i jedna z pierwszych potwierdzonych czarnych dziur. Od czasu potwierdzenia w 1992 roku V404 Cygni jest jedną z najlepiej przebadanych czarnych dziur, na jej temat powstało ponad 1300 prac naukowych.
      Burdge, oglądając jej zdjęcia, zauważył dwa źródła światła, zadziwiająco blisko siebie. Pierwsze ze źródeł zostało już wcześniej opisane jako niewielka gwiazda, której materiał jest wciągany przez V404 Cygni. Drugim ze źródeł nikt się dotychczas szczegółowo nie zainteresował. Burdge przystąpił do pracy. Dzięki danym z europejskiego satelity Gaia stwierdził, że to druga gwiazda, poruszająca się w tandemie z pierwszą. Prawdopodobieństwo, że to tylko przypadek, wynosi 1 do 10 milinów.
      Zatem ta druga gwiazda również jest powiązana grawitacyjnie z V404 Cygni. Jest jednak daleko od niej. Znajduje się w odległości 3500 jednostek astronomicznych, czyli 3500 razy dalej niż Ziemia od Słońca. Obserwacje tej gwiazdy zdradziły też wiek całego układu. Badacze stwierdzili, że gwiazda rozpoczyna proces zmiany w czerwonego olbrzyma, ma zatem około 4 miliardów lat.
      Jak się zatem okazuje, nawet – wydawałoby się – bardzo dobrze przebadane obiekty astronomiczne mogą skrywać niezwykłe tajemnice, których rozwikłanie znacząco zmienia i wzbogaca naszą wiedzę.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dzięki pracy zawodowych astronomów, astronomów-amatorów oraz wykorzystaniu sztucznej inteligencji udało się odnaleźć niezwykły zaćmieniowy układ potrójny TIC 290061484. Odkryto go w danych z TESS (Transiting Exoplanet Survey Satellite). Układ złożony jest z dwóch gwiazd, które obiegają się w ciągu 1,8 doby, oraz trzeciej gwiazdy, obiegającej tę parę w ciągu 25 dni. To rekordowo ciasny układ potrójny. Dotychczasowym rekordzistą był ten odkryty w 1956 roku, gdzie dwie gwiazdy były obiegane przez trzecią w ciągu 33 dni.
      TIC 290061484 znajduje się w Gwiazdozbiorze Łabędzia i z naszej perspektywy wydaje się niemal płaski. Przez to każda z gwiazd przesłania swoje towarzyszki, blokując część ich światła. I to właśnie dzięki tym zmianom jasności udało się układ odnaleźć.
      Najpierw naukowcy przeanalizowali olbrzymią liczbę danych z TESS, odfiltrowując z nich te informacje, które świadczyły o istnieniu zaćmień. Następnie niewielka grupa astronomów-amatorów dokonała kolejnych analiz, poszukując w danych szczególnie interesujących przypadków. Ci amatorzy to osoby, które po raz pierwszy spotkały się online, biorąc udział w projekcie Planet Hunters. Zakończył się on w 2013 roku, ale grupa nie zaprzestała pracy. Skontaktowała się z zawodowymi astronomami i wspólnie zapoczątkowali projekt Visual Survey Group. Wspólnie szukamy głównie śladów kompaktowych układów składających się z wielu gwiazd, niezwykłych gwiazd zmiennych w układach podwójnych oraz nietypowych obiektów, mówi emerytowany profesor fizyki z MIT, Saul Rappaport.
      Nowo odkryty układ jest tak kompaktowy, że zmieściłby się wewnątrz orbity Merkurego. Jest stabilny tylko dlatego, że orbity wszystkich trzech gwiazd znajdują się niemal na tej samej płaszczyźnie. Dlatego grawitacja każdej z nich nie zakłóca zbytnio ruchu pozostałych. Orbity gwiazd są prawdopodobnie stabilne od milionów lat. Zdaniem profesora Rappaporta, gwiazdy uformowały się w ramach tego samego procesu, który jednocześnie uniemożliwił utworzenie się planet blisko którejkolwiek z nich. Jedyne planety, które potencjalnie mogłyby tam istnieć, to takie, krążące wokół całego układu, jakby był on jedną gwiazdą.
      Uczeni mówią, że z czasem wewnętrzne gwiazdy układu będą się starzały i zwiększały swoją objętość, co doprowadzi do ich połączenia się i powstania supernowej. Będzie to miało miejsce za 20-40 milionów lat.
      Naukowcy z niecierpliwością czekają na uruchomienie Nancy Grace Roman Space Telescope. Dostarczy on znacznie bardziej szczegółowych danych niż TESS. Dość wspomnieć, że to, co w TSS widzimy jako 1 piksel, w Roman Telescope będzie reprezentowane przez 36 000 pikseli. TESS daje nam szeroki ogląd całego nieboskłonu, Roman pozwoli zaś sięgnąć wzrokiem znacznie dalej, aż do centrum Drogi Mlecznej. Będzie też w stanie odnaleźć układy zaćmieniowe składające się ze znacznie większej liczby gwiazd. Uczeni liczą na to, że zaobserwuje on układy 6 i więcej gwiazd. Zanim odkryto potrójne układy zaćmieniowe, nawet nie przypuszczano, że one istnieją. Roman może pokazać nam nigdy wcześniej niewidziane obiekty i układy, dodaje Tamás Borkovits z Uniwersytetu w Segedynie na Węgrzech.


      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...