Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Tajemnicza Krowa wciąż stanowi zagadkę dla astronomów

Recommended Posts

Krowa, niezwykle jasne światło na niebie, wciąż dzieli naukowców, którzy nie wiedzą, jaka jest natura tajemniczego zjawiska.
Obiekt AT2018cow, nazwany nieoficjalnie Krową (Cow) został po raz pierwszy zaobserwowany 16 czerwca 2018 roku. Pojawił się nagle i znikąd w niewielkiej galaktyce odległej o około 200 milionów lat świetlnych. Krowa jest bardzo jasna, a jej gwałtowne pojawienie się świadczy o tym, że nie jest to supernowa, gdyż te wolniej zyskują na jasności.

Początkowo sądzono, że Krowa znajduje się znacznie bliżej, niewykluczone, że w Drodze Mlecznej. Pojawiły się przypuszczenia, że mamy do czynienia z białym karłem, który pochłania materiał pobliskiej gwiazdy i okresowo rozbłyska. Takie wydarzenia są częste w naszej galaktyce. Jednak analiza spektrum światła Krowy wykazała, że znajduje się ona znacznie dalej, w innej galaktyce, i to w odległości, z której rozbłyskujący biały karzeł nie byłby widoczny.

Już pierwsze obserwacje pokazały, jak bardzo niezwykły jest to obiekt. Brak mu cech charakterystycznych supernowej. Ponadto zyskiwał na jasności i pozostał bardzo jasnym przez niemal 3 tygodnie. Supernowe zwykle się tak nie zachowują, mówi Daniel Perley, astronom z Liverpool John Moores University.

Gdy tylko odkryto, w jakiej odległości leży Krowa, Liliana Rivera Sandoval z Texas Tech University postarała się o dostęp do należącego do NASA Neil Gehrels Swift Observatory, by zobaczyć, jak obiekt wygląda w ultrafiolecie i promieniach rentgenowskich. Okazało się, że emisja w obu zakresach jest bardzo jasna. Ponadto, chociaż jasność promieniowania rentgenowskiego początkowo się zmieniała, to jego spektrum nie ulegało zmianie, nie ewoluowało, co jest czymś niezwykłym, stwierdziła Sandoval. Po 3 tygodniach zakres zmian promieniowania X zwiększył się i spadła też jego jasność.

Naukowcy zgadzają się, że długotrwałość tego wydarzenia wskazuje, że po początkowym rozbłysku coś je napędzało. Nie wiadomo jednak co. Niektórzy uważają, że mogła być to niezwykła supernowa, której jądro zapadło się już po eksplozji. Zdaniem innych, byliśmy świadkami rozerwania gwiazdy przez czarną dziurę Jednak takie wydarzenie zwykle wymaga obecności supermasywnej czarnej dziury, takiej, jakie znajdują się w centrach galaktyk, tymczasem Krowa pojawiła się w ramieniu galaktyki spiralnej. Część uczonych stwierdziła więc, że znajduje się tam średnio masywna czarna dziura. Jednak brak jednoznacznych dowodów na istnienie takich dziur. Każda z hipotez ma swoje słabe strony, przyznaje Sandoval.

Jakby jeszcze tych tajemnic było mało, warto wspomnieć o obserwacjach przeprowadzonych przez Annę Ho z California Institute of Technology. Pani Ho użyła Submilimeter Array na Mauna Kea. Obiektów eksplodujących zwykle nie obserwuje się w zakresie fal milimetrowych, gdyż fale zanikają krótko po eksplozji i zwykle nie udaj się ich uchwycić. Tym razem było inaczej. Po kilkunastu dniach Krowa nadal jasno świeciła w tym zakresie. Po raz pierwszy udało mi się zaobserwować takie fale z takiego źródła, mówi Ho. Podobnie do innych zakresów, Krowa długo świeciła w spektrum milimetrowym, a później emisja zaczęła zanikać. Ho uważa, że emisja pochodziła z fali uderzeniowej wywołanej przez obiekt eksplodujący w otoczeniu pyłu i gazu. Nagły spadek emisji był spowodowany wyjściem fali poza granicę gazu i pyłu.

Naukowcy nie potrafią więc jednoznaczne wyjaśńić, czym była Krowa. Mają więc nadzieję, że trafią na więcej takich zdarzeń, dzięki czemu uda się je zbadać.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      W gwiazdozbiorze Pegaza znajduje się układ planetarny BD+14 4559. Został on odkryty przez polskich astronomów pracujących pod kierunkiem prof. Andrzeja Niedzielskiego z Centrum Astronomii UMK. Z okazji 100. rocznicy istnienia Międzynarodowej Unii Astronomicznej został zorganizowany konkurs IAU100 NameExoWorlds. W jego ramach każdy kraj na świecie otrzymał do nazwania układ składający się z jednej gwiazdy i jednej planety.
      Układ, który możemy nazwać znajduje się w odległości 161 lat świetlnych od Ziemi. Wokół mniejszej, mniej masywnej i chłodniejszej od Słońca gwiazdy krąży tam planeta o masie o 4% większej od masy Jowisza i promieniu o 23% większym niż promień Jowisza. Obiega ona gwiazdę w odległości 0,78 j.a. w ciągu 269 ziemskich dni.
      Gwiazdę BD+14 4559 można obserwować z Ziemi nawet przez lornetkę. Znajduje się ona w gwiazdozbiorze Pegaza przy granicy z konstelacją Delfina.
      Teraz każdy z nas może wziąć udział w głosowaniu nad nazwą dla gwiazdy i planety. Propozycje, które przeszły do drugiego etapu konkursu to: Geralt i Ciri, Jantar i Wolin, Piast i Lech, Polon i Rad, Solaris i Pirx, Swarog i Weles oraz Twardowski i Boruta. Głosowanie trwa do końca października.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Jeśli to, co uznawaliśmy za czarne dziury jest w rzeczywistości obiektami nieposiadającymi osobliwości, wówczas przyspieszające rozszerzanie wszechświata jest naturalną konsekwencją Einsteinowskiej ogólnej teorii względności, mówi Kevin Croker z Uniwersytetu Hawajskiego. Croker i jego kolega opublikowali na łamach Astrophysical Journal artykuł, w którym stwierdzają, że niektóre obiekty uznawane obecnie za czarne dziury, mogą nie być czarnymi dziurami, ale obiektami pełnymi ciemnej energii.
      Kevin Croker i emerytowany profesor matematyki Joel Weiner nie zajmowali się badaniem czarnych dziur. Przyglądali się równaniom Friedmanna, które zostały przez ich twórcę wywiedzione z teorii Einsteina. Fizycy wykorzystują te równania do opisu rozszerzania się wszechświata, gdyż za ich pomocą łatwiej jest prowadzić obliczenia. Naukowcy zauważyli, że aby poprawnie zapisać równania Friedmanna, ultragęste izolowane obiekty we wszechświecie, takie jak gwiazdy neutronowe czy czarne dziury muszą być – z matematycznego punktu widzenia – traktowane jak cała reszta. Dotychczas kosmolodzy uważali, że w obliczeniach należy pomijać szczegóły dotyczące tych obiektów.
      Wykazaliśmy, że istnieje tylko jeden prawidłowy sposób na tworzenie tych równań. A jeśli zrobi się to w ten sposób, można dojść do bardzo interesujących wniosków, mówi Croker.
      Z obliczeń wynika, że cała ciemna energia, potrzebna do przyspieszania rozszerzania się wszechświata, może znajdować się w obiektach uznawanych obecnie za czarne dziury. Co więcej wykazali, że te alternatywy dla czarnych dziur – nazwane Generycznymi Obiektami Ciemnej Energii (GEODE – Generic Objects of Dark Energy) – pozwalają również wyjaśnić pewne cechy fal grawitacyjnych.
      Wyliczenia, dokonane przez Crokera i Weinera wykazały, że GEODE, ultragęste obiekty pełne ciemnej energii, ale niezawierające osobliwości, zyskują masę wyłącznie przez to, że wszechświat się rozszerza. Ich masa zwiększa się, nawet gdy w pobliżu nie ma materii, którą mogłyby wchłonąć. Tak, jak światło podróżujące przez rozszerzający się wszechświat traci energię, co widzimy w postaci przesunięcia w podczerwieni, tak i materia traci masę w miarę rozszerzania się wszechświata. Zwykle efekt ten jest zbyt słaby, by go zauważyć. Jednak w ultragęstych środowiskach, wewnątrz których panuje niezwykle wysokie ćiśnienie, mamy do czynienia z materiałem relatywistycznym, a tam efekt utraty masy przez materię jest zauważalny. Ciemna materia jest relatywistyczna i panujące wewnątrz niej ciśnienie działa inaczej niż na materię czy światło. Zatem obiekty zbudowane z ciemnej energii, jak GEODE, z czasem zyskują masę.
      Hipoteza dotycząca GEODE pojawiła się w latach 60. ubiegłego wieku, ale dopiero ostatnio opracowano metody matematyczne, pozwalające badać te obiekty. Dzięki pracy Crokera i Weinera wydaja się, że za ich pomocą w prosty sposób można wyjaśnić pewne zjawiska zaobserwowane podczas rejestracji fal grawitacyjnych pochodzących z połączenia dwóch czarnych dziur. Gdy LIGO po raz pierwszy wykrył fale grawitacyjne wyliczono, że pochodzą one z połączenia czarnych dziur o masach 29 i 36 mas Słońca. Tymczasem naukowcy spodziewali się innych mas.
      Jednak GEODE, w przeciwieństwie do czarnych dziur, zyskują z czasem masę. Uformowane w młodym wszechświecie GEODE mogły z czasem zyskać na masie i to właśnie one mogły się zderzyć, co zostało zaobserwowane przez LIGO. Wyjaśnienie takie jest znacznie prostsze niż przyjęcie, że mieliśmy do czynienia z czarnymi dziurami o takich, a nie innych masach.
      Nie wszyscy są przekonani do twierdzeń Crokera i Weinera. Profesor fizyki Vitor Cardoso z Instituto Superior Tecnico w Lizbonie mówi, że zaprezentowany opis GEODE jest sprzeczny z intuicją i trudny do przyjęcia. Dodaje przy tym: podoba mi się pomysł znalezienia alternatyw dla czarnych dziur. To zmusi nas to wzmocnienia teorii opisującej czarne dziury. Poza tym, jeśli nie będziemy takiej alternatywy szukali, to nigdy jej nie znajdziemy.
      Badania opisano w artykule Implications of Symmetry and Pressure in Friedmann Cosmology. I. Formalism

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astronomowie obserwują ostatnie etapy łączenia się trzech supermasywnych czarnych dziur. Krążą one wokół siebie w centrum trzech galaktyk, do połączenia których dochodzi w odległości około miliarda lat świetlnych od Ziemi. Niezwykły taniec czarnych dziur specjaliści zauważyli wewnątrz obiektu SDSS J084905.51+111447.2.
      Obserwowaliśmy parę czarnych dziur, a gdy użyliśmy kolejnych technik [obrazowania rentgenowskiego o wysokiej rozdzielczości przestrzennej, obrazowania w bliskiej podczerwieni oraz spektroskopii optycznej – red.] znaleźliśmy ten niezwykły system, mówi główny autor badań, Ryan Pfeifle z George Mason University. Mamy tutaj najsilniejsze z dostępnych dowodów na istnienie systemu trzech aktywnych supermasywnych czarnych dziur.
      Badania wspomnianego systemu rozpoczęły się od jego obrazowania w świetle widzialnym za pomocą teleskopu Sloan Digital Sky Survey (SDSS) w Nowym Meksyku. Dane udostępniono w społecznościowym projekcie Galaxy Zoo, którego użytkownicy oznaczyli SDSS J084905.51+111447.2 jako miejsce, w którym właśnie dochodzi do łączenia się czarnych dziur. Naukowcy przeanalizowali więc dane zebrana przez teleskop kosmiczny Wide-field Infrared Survey Explorer (WISE). Pracuje on w podczerwieni i jeśli rzeczywiście w galaktyce dochodzi do łączenia się czarnych dziur, to powinien on zaobserwować co najmniej dwa źródła gwałtownego pochłaniania materii. Kolejne obserwacje potwierdziły podejrzenia. Chandra X-ray Observatory wykrył istnienie silnych źródeł promieniowania X, co wskazuje, że czarne dziury pochłaniają tam duże ilości pyłu i gazu. Podobne dowody zdobył Nuclear Spectroscopic Telescope Array (NuSTAR). Kolejne obrazowanie w świetle widzialnym przeprowadzone za pomocą SDSS i Large Binocular Telescope potwierdziły obecność trzech aktywnych czarnych dziur.
      Dzięki użyciu wielu instrumentów opracowaliśmy nową technikę identyfikowania potrójnych układów supermasywnych czarnych dziur. Każdy z tych teleskopów dostarczył nam nieco innych informacji o tym, co się tam dzieje. Mamy nadzieję, że za pomocą tej techniki znajdziemy więcej układów potrójnych, mówi Pfeifle.
      Naukowcy stwierdzili, że odległość pomiędzy każdą z czarnych dziur, a jej sąsiadami wynosi od 10 do 30 tysięcy lat świetlnych. Będzie ona malała, gdyż galaktyki, do których należą te dziury, łączą się, więc i czarne dziury są skazane na połączenie.
      Dzięki wykryciu przez LIGO fal grawitacyjnych pochodzących z łączenia się czarnych dziur, wiemy co nieco o tym, jak przebiega taki proces. Jednak łączenie się układu potrójnego wygląda prawdopodobnie nieco inaczej. Specjaliści podejrzewają, że obecność trzeciej dziury powoduje, iż dwie pierwsze łączą się znacznie szybciej.
      Istnienie układu potrójnego może pozwolić też na wyjaśnienie teoretycznego „problemu ostatniego parseka”. Gdy dochodzi do połączenia dwóch galaktyk ich czarne dziury nie zderzają się czołowo, ale powinny minąć się po orbicie hiperbolicznej. Musi istnieć mechanizm, który spowoduje, że zbliżą się do siebie. Najważniejszym takim mechanizmem jest dynamiczne tarcie. Gdy czarna dziura zbliża się do gwiazdy, gwiazda jest przyspieszana, a czarna dziura spowalniana. Mechanizm ten spowalnia czarne dziury na tyle, że tworzą powiązany ze sobą układ podwójny. Dynamiczne tarcie nadal działa, dziury zbliżają się do siebie na odległość kilku parseków. Jednak proces krążenia czarnych dziur wokół siebie powoduje, że w pobliżu zaczyna brakować materii. W końcu jest jej tak mało, że jej oddziaływanie nie wystarczy, by dziury się połączyły.
      Ostatecznie do połączenia się czarnych dziur mogłyby doprowadzić fale grawitacyjne, ale ich oddziaływanie ma znaczenie dopiero, gdy dziury zbliżą się do siebie na odległość 0,01–0,001 parseka. Wiemy jednak, że czarne dziury się łączą, pozostaje więc pytanie, co rozwiązuje problem ostatniego parseka, czyli co powoduje, że zbliżą się do siebie na tyle, iż utworzą jedną czarną dziurę. Obecność trzeciej czarnej dziury wyjaśniałaby, jaka siła powoduje, że czarne dziury się łączą.
      Nie można też wykluczyć, że w układach potrójnych dochodzi nie tylko do połączenia się dwóch czarnych dziur, ale i do wyrzucenia trzeciej z nich w przestrzeń kosmiczną.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W centrum Drogi Mlecznej znajduje się supermasywna czarna dziura o masie 4 milionów mas Słońca. Jest ona spokojna jak na aktywne jądro galaktyki, jednak obserwacje w zakresie promieniowania rentgenowskiego pokazują, że w okolicach czarnej dziury dochodzi do silnych rozbłysków. Ponadto chociaż tempo formowania się gwiazd w tamtym regionie jest od kilkuset milionów lat stabilne, mamy dowody, że czasami dochodzi tam do wysokoenergetycznych epizodów. Teraz na łamach Nature naukowcy donoszą o odkryciu dwóch bąbli emitujących promieniowanie radiowe i znajdujących się nad oraz pod płaszczyzną Galaktyki.
      Rozmiary obu bąbli wynoszą 140x430 parseków, czyli każda z nich rozciąga się na 700 lat świetlnych. Wiek bąbli oceniono na kilka milionów lat, a całkowitą energię na 7x1052 ergów.
      Naszym czytelnikom z pewnością coś to przypomina. Przed 9 laty informowaliśmy o odkryciu tajemniczych bąbli rozciągających się w obu kierunkach od centrum Drogi Mlecznej. Natura Bąbli Fermiego wciąż nie została wyjaśniona. A odkryte właśnie bąble emitujące promieniowanie radiowe nie są tym samym, co Bąble Fermiego. To zupełnie nowa, nieznana dotychczas struktura i jedna z największych istniejących w centrum Drogi Mlecznej.
      Centrum naszej galaktyki jest dość spokojne w porównaniu z innymi galaktykami. Mimo to, nasza centralna czarna dziura może być czasami niezwykle aktywna, rozbłyskając, gdy wchłonie większe ilości pyłu i gazu. Możliwe, że podczas jednego z takich zdarzeń doszło do potężnego rozbłysku, który utworzył te bąble, mówi astrofizyk Ian Heywood z Uniwersytetu w Oksfordzie.
      Na pierwsze ślady nowo odkrytych struktur trafił w latach 80. ubiegłego wieku astronom Farhad Yusef-Zadeh z Northwestern University, który wraz z kolegami zauważył w centrum galaktyki długie, wąskie dobrze zorganizowane i wysoce namagnetyzowane pasma gazu, rozciągające się na dziesiątki lat świetlnych, których szerokość wynosiła zaledwie rok świetlny. Gaz ten emitował promieniowanie synchrotronowe. Podobnych struktur nigdzie indziej nie zaobserwowano.
      W międzyczasie powstał należący do National Radio Astronomy Observatory południowoafrykański teleskop MeerKAT, złożony z 64 anten. Gdy naukowcy nakierowali go na centrum Drogi Mlecznej zauważyli wspomniane bąble emitujące promieniowanie radiowe. Bąble odkryte przez MeerKAT rzucają nowe światło na pochodzenie pasm gazu, mówi Yusef-Zadeh. Niemal wszystkie z ponad 100 takich pasm znajdują się wewnątrz bąbli radiowych.
      Cała nowo odkryta struktura przypomina klepsydrę, ma wyraźnie zaznaczone ostre krawędzie, jest niezwykle symetryczna. To ta symetria oraz całkowita długość struktury wynosząca 1400 lat świetlnych zdradzają kilka szczegółów na temat struktury. Kształt i symetria wskazują, że wydarzenie, które utworzyło tę strukturę miało miejsce przed kilkoma milionami lat w bezpośrednim pobliżu czarnej dziury. Prawdopodobnie doszło do erupcji wywołanej olbrzymią ilością gazu, który wpadł do czarnej dziury lub też masowym formowaniem się gwiazd, co wywołało falę uderzeniową, która przeszła przez centrum galaktyki. Wskutek tego wydarzenia w gorącym zjonizowanym gazie w pobliżu centrum galaktyki doszło do wygenerowania fal radiowych, które możemy obecnie rejestrować, wyjaśnia William Cotton z National Radio Astronomy Observatory.
      Mimo, że bąble radiowe są mniejsze i mają mniej energii niż Bąble Fermiego, nie można wykluczyć, że obie struktury powstały w wyniku podobnych, może nawet połączonych ze sobą, wydarzeń.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Gwiazdy neutronowe to najbardziej gęste – nie licząc czarnych dziur – obiekty we wszechświecie. Centymetr sześcienny ich materii waży miliony ton. Naukowcy wciąż je badają próbując znaleźć odpowiedzi na wiele pytań. Chcieliby np. dowiedzieć się, jak wyglądają neutrony ściśnięte tak potężnymi siłami czy gdzie leży granica pojawienia się czarnej dziury.
      Naukowcy używający Green Bank Telescope donieśli właśnie o odkryciu najbardziej masywnej gwiazdy neutronowej. Pulsar J0740+6620 ma masę 2,17 większą od masy Słońca, a całość jest upakowana w kuli o średnicy zaledwie 30 kilometrów. To bardzo ważne odkrycie, gdyż z danych dostarczonych przez detektor LIGO, który zarejestrował fale grawitacyjne pochodzące ze zderzenia dwóch gwiazd neutronowych wynika, iż 2,17 masy Słońca to bardzo blisko granicy powstania czarnej dziury.
      Gwiazdy neutronowe są tajemnicze i fascynujące. Te obiekty wielkości miasta przypominają ogromne jądro atomowe. Są tak masywne, że mają dziwaczne właściwości. Gdy dowiemy się, jaka może być ich maksymalna masa, poznamy wiele niedostępnych obecnie faktów z astrofizyki, mówi doktorant Thankful Cromartie.
      Pulsar J0740+6620 tworzy układ podwójny z białym karłem. To właśnie dzięki temu udało się precyzyjnie określić jego masę. Pulsary emitują bowiem z obu biegunów fale radiowe. Emisja ma miejsce w bardzo regularnych odstępach. Jako, że wspomniany pulsar ma towarzysza, to gdy z ziemskiego punktu widzenia znajduje się za nim, obecność białego karła zagina przestrzeń, co powoduje pojawienie się zjawiska znanego jako opóźnienie Shapiro. Z powodu obecności obiektu zniekształcającego przestrzeń, sygnał radiowy musi przebyć nieco dłuższą drogę, by dotrzeć do Ziemi. W omawianym przypadku opóźnienie wynosi około 10 milisekund. To wystarczy, by na tej podstawie wyliczyć masę białego karła. Gdy już ją znamy, z łatwością da się wyliczyć masę towarzyszącego mu pulsara.
      Położenie tego układu podwójnego względem Ziemi stworzyło nam wyjątkową okazję. Istnieje granica, poza którą gęstość we wnętrzu gwiazd neutronowych jest tak wielka, iż grawitacja przezwycięża materię i gwiazda dalej się zapada. Każda kolejna „rekordowo masywna” gwiazda neutronowa, którą odkrywamy, przybliża nas do odkrycia tej granicy i pozwala lepiej zrozumieć zjawiska fizyczne zachodzące przy tak olbrzymich gęstościach, mówi astronom Scott Ransom.
      Badania były prowadzone w ramach programu NANOGrav Physics Frontiers Center.


      « powrót do artykułu
×
×
  • Create New...