Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Algorytm na smartfona lepiej diagnozuje niż lekarze
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Dermatolog Harald Kittler z Uniwersytetu Medycznego w Wiedniu stanął na czele austriacko-australijskiego zespołu, który porównał trafność diagnozy i zaleceń dotyczących postępowania z przebarwieniami na skórze stawianych przez lekarzy oraz przez dwa algorytmy sztucznej inteligencji pracujące na smartfonach. Okazało się, że algorytmy równie skutecznie co lekarze diagnozują przebarwienia. Natomiast lekarze podejmują znacznie lepsze decyzje dotyczące leczenia.
Testy przeprowadzono na prawdziwych przypadkach pacjentów, którzy zgłosili się na Wydział Dermatologii Uniwersytetu Medycznego w Wiedniu oraz do Centrum Diagnozy Czerniaka w Sydney w Australii.
Testowane były dwa scenariusze. W scenariuszu A porównywano 172 podejrzane przebarwienia na skórze (z których 84 były nowotworami), jakie wystąpiły u 124 pacjentów. W drugim (scenariuszu B) porównano 5696 przebarwień – niekoniecznie podejrzanych – u 66 pacjentów. Wśród nich było 18 przebarwień spowodowanych rozwojem nowotworu. Testowano skuteczność dwóch algorytmów. Jeden z nich był nowym zaawansowanym programem, drugi zaś to starszy algorytm ISIC (International Skin Imaging Collaboration), używany od pewnego czasu do badań retrospektywnych.
W scenariuszu A nowy algorytm stawiał diagnozę równie dobrze jak eksperci i był wyraźnie lepszy od mniej doświadczonych lekarzy. Z kolei algorytm ISIC był znacząco gorszy od ekspertów, ale lepszy od niedoświadczonych lekarzy.
Jeśli zaś chodzi o zalecenia odnośnie leczenia, nowoczesny algorytm sprawował się gorzej niż eksperci, ale lepiej niż niedoświadczeni lekarze. Aplikacja ma tendencję do usuwania łagodnych zmian skórnych z zaleceń leczenia, mówi Kittler.
Algorytmy sztucznej inteligencji są więc już na tyle rozwinięte, że mogą służyć pomocą w diagnozowaniu nowotworów skóry, a szczególnie cenne będą tam, gdzie brak jest dostępu do doświadczonych lekarzy. Ze szczegółami badań można zapoznać się na łamach The Lancet.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Uniwersytet im. Adama Mickiewicza w Poznaniu (UAM), Politechnika Poznańska oraz neurolodzy i psychiatrzy chcą opracować nową, bezinwazyjną metodę diagnozowania choroby Alzheimera na wczesnym etapie. Jak podkreślono na stronie UAM, w celu przeprowadzenia badań pilotażowych w projekcie naukowcy planują zgromadzić grupę około 50 osób zagrożonych rozwojem choroby, a także podobną grupę kontrolną.
Choroba Alzheimer przez dekady może rozwijać się bez żadnych objawów. Tymczasem, jak w przypadku większości chorób, wczesne rozpoznanie ma olbrzymie znaczenie dla rokowań. Im zatem szybciej schorzenie zostanie zdiagnozowane, tym większa szansa na wyleczenie czy powstrzymanie dalszych postępów choroby. Wszyscy mamy nadzieję, że prędzej czy później będziemy dysponować skutecznym lekiem, jednak może się okazać, że największą barierą w jego zastosowaniu będzie dostęp do wczesnej diagnostyki - obecnie drogiej i trudno osiągalnej, mówi profesor Jędrzej Kociński z UAM.
Naukowcy zapraszają więc do wzięcia udziału w bezpłatnych anonimowych badaniach wszystkich, którzy podejrzewają, że coś złego dzieje się z ich pamięcią, oraz osoby po 50. roku życia bez zaburzeń pamięci, ale w rodzinach których są lub były osoby z wczesnym otępieniem (czyli takie, u których rozwinęło się one przed 65. rokiem życia). W badaniach nie mogą wziąć udział osoby z wyraźnymi objawami otępienia, ani z już zdiagnozowaną chorobą Alzheimera. Szczegółowe informacje o projekcie znajdziemy na stronach Alzheimer Prediction Project, a chęć udziału w badaniu można zgłosić pisząc na adres kierownika projektu, doktora Marcina Górniaka, lekarz.marcin.gorniak[at]gmail.com.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na University of Oxford powstaje oprogramowanie, które na podstawie wyglądu twarrzy ma rozpoznawać rzadkie choroby genetyczne. Choroby takie dotykają około 6% populacji, ale w większości przypadków pozostają nierozpoznane. Istnieją testy genetyczne pozwalające zdiagnozować częściej występujące schorzenia, takie jak np. zespół Downa. Jednak dla wielu chorób testy nie zostały opracowane, gdyż nie zidentyfikowano genów, które je powodują.
W przypadku 30-40 procent osób cierpiących na schorzenia genetyczne pewne charakterystyczne cechy są widoczne na twarzach. I właśnie na tej podstawie lekarz może postawić diagnozę. Problem w tym, że niewielu medyków ma odpowiednie przygotowanie pozwalające na rozpoznanie chorób genetycznych na podstawie wyglądu twarzy. Z tego też powodu wiele osób nie ma przez całe lata postawionej prawidłowej diagnozy.
Dlatego też Christoffer Nellaker i Andrew Zisserman z Oxfordu postanowili stworzyć oprogramowanie, które na podstawie zdjęcia będzie pomagało we wstępnej diagnostyce.
Obaj naukowcy wykorzystali w swojej pracy 1363 publicznie dostępne zdjęcia osób cierpiących na osiem schorzeń genetycznych. Znalazły się wśród nich fotografie chorych na zespół Downa, zespół łamliwego chromosomu X czy progerię. Komputer uczył się identyfikować każdą z chorób na podstawie zestawu 36 cech twarzy, takich jak kształt oczu, ust, nosa czy brwi. „Automatycznie analizuje zdjęcie i skupia się na głównych cechach, z których tworzy opis twarzy podkreślając cechy odróżniające” - mówi Nellaker. Później opis taki jest przez komputer porównywany ze zdjęciami osób ze zdiagnozowanymi schorzeniami. Na tej podstawie maszyna wydaje swoją opinię i określa prawdopodobieństwo, z jaki dana osoba może cierpieć na któreś ze schorzeń.
Skuteczność algorytmu zwiększa się wraz z wielkością bazy danych fotografii referencyjnych. W przypadku ośmiu schorzeń genetycznych, którymi obecnie się zajęto, baza danych dla każdej z nich wynosiła od 100 do 283 zdjęć osób ze zdiagnozowanymi chorobami. Testy wykazały, że maszyna rozpoznaje choroby z 93-procentową trafnością.
Tak obiecujące wyniki skłoniły naukowców do rozszerzenia zestawu diagnozowanych chorób do 91. W bazie danych znajdują się obecnie 2754 zdjęcia osób, u których rozpoznano jedną z tych chorób. Na razie system nie podaje dokładnej diagnozy, jednak naukowcy szacują, że już w tej chwili ich algorytm potrafi właściwie rozpoznać chorobę z 30-krotnie większym prawdopodobieństwem niż przy losowym zgadywaniu. Na przykład na podstawie zdjęcia Abrahama Lincolna system uznał, że cierpiał on na zespół Marfana. Niektórzy historycy twierdzą, że prezydent rzeczywiście na to chorował. Zespół Marfana jest siódmą najczęściej występujących schorzeniem spośród 91, którymi zajmuje się algorytm.
Nellaker przyznaje, że algorytm nie podaje 100-procentowo pewnych odpowiedzi, ale pozwala na znaczne zawężenie możliwości wyboru. Teoretycznie może być on używany do diagnozowania noworodków, jednak jego twórcy uważają, że będzie używany głównie do diagnozowania rodziców, którzy martwią się, iż mogliby swoim dzieciom przekazać jakieś schorzenia. Główną zaletą systemu będzie jego łatwa dostępność. Szczególnie przyda się on tam, gdzie testy genetyczne są niedostępne.
Ma on też olbrzymią przewagę nad stworzonymi wcześniej systemami korzystającymi z obrazów 3D. Tworzenie takich obrazów jest trudne i kosztowne, a pacjent musi odwiedzić szpital, w którym obraz zostanie wykonany. System Nellakera i Zissermana potrzebuje jedynie cyfrowego zdjęcia twarzy.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Nasze badania wykazały, że u ozdrowieńców w ciągu sześciu miesięcy od zdiagnozowania COVID-19 ryzyko zgonu jest większe i rośnie wraz z cięższym przebiegiem choroby, mówi profesor Ziyad Al-Aly. Do takich wniosków naukowcy z Washington University of St. Louis doszli na podstawie analizy danych ponad 87 000 osób, które chorowały na COVID-19 i grupy kontrolnej składającej się z 5 000 000 osób z federalnej bazy danych. To najszerzej zakrojone badania nad długoterminowymi skutkami COVID-19.
Nie jest przesadą stwierdzenie, że długoterminowe skutki COVID-19 będą w przyszłości stanowiły poważny kryzys zdrowotny w USA. Biorąc pod uwagę fakt, że chorowało ponad 30 milionów osób, a długoterminowe skutki choroby są znaczące, efekty pandemii będziemy odczuwali przez lata, a nawet dekady. Lekarze muszą lepiej przyglądać się osobom, które przechorowały COVID-19, dodaje uczony.
Badacze wykazali, że po przetrwaniu początkowej infekcji COVID-19 – za taki stan uznano okres rozpoczynający się 30 dni po diagnozie – ryzyko zgonu w ciągu kolejnych 6 miesięcy jest o 60% wyższe niż w reszcie populacji. Okazało się, że w tym czasie liczba zgonów wśród ozdrowieńców jest wyższa o 8 osób na 1000. Znacznie gorzej jest w grupie, która była na tyle chora, że w związku z COVID-19 trafiła do szpitala. Tam umiera aż 29 osób na 1000 więcej, niż w całej populacji.
Te zgony, spowodowane długoterminowymi skutkami infekcji, niekoniecznie są zaliczane do zgonów z powodu COVID-19. Wydaje się zatem, że obecnie podawana liczba zgonów, do których zalicza się jedynie zgony bezpośrednio po infekcji, to wierzchołek góry lodowej, dodaje Al-Aly.
Na potrzeby badań przeanalizowano dane zdrowotne 73 435 osób z bazy danych Departamentu ds. Weteraów (VHA). Wszystkie te osoby przeszły COVID-19 ale żadna z nich nie była z tego powodu hospitalizowana. Dane te porównano z informacjami o niemal 5 milionach osób z bazy VHA, u których nie zdiagnozowano COVID-19. Ponadto, by lepiej zrozumieć ciężki przebieg COVID-19 naukowcy porównali też informacje o 13 654 osobach, które były hospitalizowane z powodu koronawirusa, z danymi 13 997 osób hospitalizowanych z powodu sezonowej grypy. Wszyscy pacjenci przeżyli pierwszych 30 dni od infekcji,a ich losy były śledzone przez kolejnych 6 miesięcy.
W trakcie analizy potwierdzono, że mimo iż COVID-19 początkowo atakuje układ oddechowy, to wirus może wpłynąć niemal na każdy organ. Po szczegółowej analizie 379 przypadków, 380 klas przepisanych leków i 62 testów laboratoryjnych, badacze zauważyli, że wirus SARS-CoV-2 ma wpływ na cały organizm i wymienili długoterminowe skutki jego działalności, które były widoczne po ponad sześciu miesiącach od diagnozy.
I tak stwierdzono, że COVID-19 pozostawia długotrwałe skutki w następujących elementach organizmu:
– układzie oddechowym (długotrwały kaszel, krótki oddech, niski poziom tlenu we krwi),
– układzie nerwowym (wylewy, bóle głowy, problemy z pamięcią, problemy ze smakiem i węchem),
– zdrowiu umysłowym (depresja, problemy ze snem, niepokój, nadużywanie różnych substancji),
– układzie metabolicznym (cukrzyca, otyłość, wysoki poziom cholesterolu),
– układzie krążenia (ostre zespoły wieńcowe, uszkodzenia serca, palpitacje, nierównomierny rytm),
- nerkach (ciężkie uszkodzenie nerek, chroniczne uszkodzenie nerek, mogące prowadzić do konieczności dializowania),
– układzie krwionośnym (zakrzepy w nogach i płucach),
– skórze (wysypka, utrata włosów),
– układzie mięśniowo-szkieletowym (bóle stawów, osłabienie mięśni),
– ogólnym stanie zdrowia (anemia, zmęczenie, ogólne złe samopoczucie).
Żaden z badanych nie wykazywał wszystkich tych objawów, jednak u wielu pojawiło się po kilka z nich.
Wśród analizowanych przypadków osób, które trafiły do szpitala, ci, którzy byli hospitalizowani z powodu COVID-19 radzili sobie zdecydowanie gorzej, niż ci, których hospitalizowano z powodu grypy. Ryzyko zgonu wśród hospitalizowanych ozdrowieńców z COVID-19 było o 50% wyższe niż u hospitalizowanych ozdrowieńców z grypy. Ozdrowieńcy z COVID-19 ze znacznie większym prawdopodobieństwem wykazywali też długoterminowe negatywne skutki choroby.
W porównaniu z grypą COVID-19 znacznie częściej pozostawia ślady w organizmie, zarówno jeśli chodzi o rozmiary ryzyka jak i skutki dla organizmu. Długoterminowe skutki COVID-19 zdecydowanie odbiegają od typowych objawów przechorowania zakażenia wirusem. Zarówno ryzyko uszkodzeń i śmierci, jak i zakres organów i układów dotkniętych chorobą dalece wykraczają poza to, co obserwujemy w przypadku innych wirusowych chorób układu oddechowego, w tym grypy, wyjaśnia Al-Aly.
Uczeni dodają, że niektóre z długoterminowych objawów – jak np. kaszel czy krótki oddech – mogą z czasem ustępować. Inne zaś mogą się pogarszać. Będziemy nadal śledzić losy pacjentów, by lepiej zrozumieć wpływ wirusa na czas po pierwszych 6 miesiącach od infekcji. Na razie minął nieco ponad rok od wybuchu pandemii, zatem niektóre konsekwencje zachorowania mogły się jeszcze nie ujawnić, stwierdzają naukowcy.
W przyszłych analizach tej samej grupy pacjentów naukowcy chcą sprawdzić, czy istnieje różnica w długoterminowych skutkach przechorowania COVID-19 w zależności od wieku, płci i rasy.
Szczegóły badań zostały opublikowane na łamach Nature.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Rak prostaty to obecnie jeden z dwóch najczęściej rozpoznawanych nowotworów złośliwych u mężczyzn. Zapadalność na raka gruczołu krokowego rośnie z wiekiem. To poważna choroba, jednak wcześnie wykryta jest uleczalna. Szybka, właściwa diagnostyka pozwala odpowiednio dobrać terapię i zwiększyć szansę pacjenta na przeżycie.
Najdokładniej zmiany nowotworowe powala zobrazować rezonans magnetyczny (MRI). Niestety, badanie raka prostaty za pomocą tej metody jest skomplikowane. Niezbędne jest badanie wielu cech nowotworu, co utrudnia i znacznie wydłuża interpretację wyniku. Każdy otrzymany obraz musi być przeanalizowany osobno. Diagnostyka ta jest skomplikowana i trudniejsza niż w przypadku większości nowotworów złośliwych. Otrzymane wyniki są oceniane według skali PI-RADS (Prostate Imaging-Reporting and Data System), która umożliwia rozróżnienie zmian istotnych klinicznie. Analiza ta wymaga specjalistycznej wiedzy radiologów, którzy stanowią w Polsce zaledwie ok. 2 proc. lekarzy, co dodatkowo wydłuża czas oczekiwania na badanie i właściwą diagnozę. Interpretacja wyników jest subiektywna i zauważalne są różnice pomiędzy specjalistami doświadczonymi a początkującymi. Badania wykazały, że radiolodzy różnie interpretują, czy potencjalna zmiana nowotworowa jest inwazyjna.
W Ośrodku Przetwarzania Informacji – Państwowym Instytucie Badawczym (OPI PIB) prowadzimy interdyscyplinarne badania, których wyniki mają praktyczne zastosowanie w wielu dziedzinach. Jednym z obszarów jest wykorzystanie najnowszych technologii IT w medycynie i ochronie zdrowia. Z naszych badań wynika, że sztuczna inteligencja może skutecznie usprawnić pracę lekarzy. Rezultaty są bardzo obiecujące i jestem przekonany, że także pomogą one innym naukowcom opracować nowoczesne narzędzia technologiczne, mające zastosowanie w diagnostyce nie tylko raka prostaty, ale także i innych chorób – mówi dr inż. Jarosław Protasiewicz, dyrektor Ośrodka Przetwarzania Informacji – Państwowego Instytutu Badawczego (OPI PIB).
Ograniczenie liczby bolesnych biopsji
Naukowcy z Laboratorium Stosowanej Sztucznej Inteligencji w OPI PIB opracowali platformę badawczą eRADS, która służy do standaryzacji opisów raportów medycznych. Narzędzie to pozwala obiektywnie ocenić istotność kliniczną zmiany na podstawie pięciostopniowej skali PI-RADS. Platforma umożliwia także zbieranie danych z badań, co w przyszłości pomoże stworzyć rozwiązania, które automatycznie będą szacowały cechy istotne klinicznie. W tym przypadku sztuczną inteligencję zastosowano do wspomagania procesów decyzyjnych.
Badacze OPI PIB przeprowadzili badania pilotażowe z udziałem 16 pacjentów, diagnozowanych przez dwóch radiologów podczas ich dyżuru w Centralnym Szpitalu Klinicznym MSWiA w Warszawie. Specjaliści ci różnili się stażem pracy w zawodzie. Ich celem była ocena rzetelności oraz wstępnej użyteczności klinicznej systemu eRADS. Wyniki badania pilotażowego są obiecujące. Oceny istotności klinicznej zmiany przez radiologów z wykorzystaniem narzędzia opracowanego przez naukowców OPI PIB są bardziej zgodne, niż gdy dokonują oni analizy bez użycia platformy. Zastosowanie eRADS pomaga zmniejszyć różnice między jakością diagnozy lekarzy doświadczonych i niedoświadczonych. Precyzyjna ocena zmian pozwoli znacznie ograniczyć liczbę pacjentów, którzy są wysyłani na biopsję. W przypadku badania prostaty wiąże się ona z dyskomfortem pacjenta. Polega na pobraniu materiału z kilku do kilkunastu wkłuć.
Sieci neuronowe zastąpią lekarzy?
W naszym laboratorium badaliśmy także wykorzystanie w diagnostyce raka prostaty innych obszarów sztucznej inteligencji. Analizowaliśmy zastosowanie narzędzi wykorzystujących uczenie maszynowe i głębokie. Naszym celem było porównanie otrzymanych wyników z diagnozami postawionymi przez doświadczonych i niedoświadczonych radiologów. Model predykcyjny istotności klinicznej zmian, oparty o narzędzia uczenia maszynowego, bazował na cechach obrazu (np. jednorodności) w badanych komórkach i ich otoczeniu. Uzyskaliśmy model trafnie klasyfikujący istotne klinicznie zmiany z prawdopodobieństwem 75 proc., co można porównać do diagnozy niedoświadczonego lekarza. Najbardziej obiecujące rezultaty otrzymaliśmy jednak z zastosowania wiedzy domenowej w architekturze sieci neuronowych. Opracowane modele dają lepszą jakość diagnozy zmian nowotworowych w porównaniu z ocenami niedoświadczonych i doświadczonych radiologów, stawiając trafną diagnozę z prawdopodobieństwem 84 proc. – mówi Piotr Sobecki, kierownik Laboratorium Stosowanej Sztucznej Inteligencji w OPI PIB.
Podsumowując, zastosowanie wiedzy domenowej w architekturze sieci neuronowych wpływa na szybkość uczenia modelu w przypadku diagnostyki raka prostaty. Analizowano efekt lokalizacji zmiany w prostacie i niezależnie od tego czynnika, wyniki otrzymane za pomocą modeli wykorzystujących sieci neuronowe były takie same lub lepsze od diagnozy postawionej przez doświadczonych radiologów. Potwierdziły to wyniki badania OPI PIB z użyciem danych historycznych od 6 radiologów oceniających 32 zmiany nowotworowe.
Sztuczna inteligencja wykorzystująca uczenie głębokie nie zastąpi jednak lekarzy, ale ułatwi im pracę i przyspieszy rozpoczęcie leczenia pacjenta. Wciąż jednak mało jest otwartych zbiorów baz danych, które można wykorzystać do usprawnienia algorytmów sztucznej inteligencji. Należy pamiętać, że modele te są tak dobre, jak dane, na których zostały wyuczone. Chodzi zarówno o ich liczebność, jak i o jakość.
1) W Polsce z powodu raka prostaty codziennie umiera około 15 pacjentów, a choroba ta jest diagnozowana u co 8. mężczyzny
2) Ważne jest szybkie wykrycie choroby i podjęcie odpowiedniego leczenia.
3) Niestety, diagnostyka raka prostaty jest skomplikowana i trudna w porównaniu do metod wykrywania innych nowotworów.
4) Badacze z Laboratorium Stosowanej Sztucznej Inteligencji w Ośrodku Przetwarzania Informacji – Państwowym Instytucie Badawczym (OPI PIB) wykorzystali sztuczną inteligencję (SI) do usprawnienia diagnostyki obrazowej raka prostaty.
5) Najlepsze rezultaty uzyskali z zastosowaniem sieci neuronowych. Jakość otrzymanej diagnozy była na poziomie doświadczonego lekarza specjalisty lub wyższa.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.