Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' diagnoza'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 5 results

  1. Sztuczna inteligencja pomaga w diagnozowaniu stresu pourazowego (PTSD) u weteranów, analizując ich głos. W najnowszym numerze pisma Depression and Anxiety doniesiono, że opracowany na Uniwersytecie Nowojorskim (NYU) system sztucznej inteligencji potrafi z 89-procentową trafnością odróżnić osoby z PTSD od osób zdrowych. Wyniki naszych badań wskazują, że cechy charakterystyczne mowy mogą zostać wykorzystane do zdiagnozowania choroby. Chcemy by w najbliższej przyszłości nasz system, po jego udoskonaleniu i uzyskaniu odpowiednich zgód, trafił do codziennej praktyki klinicznej, mówi jeden z głównych autorów badań, dziekan Wydziału Psychiatrii, profesor Charles R. Marmar. Szacuje się, że ponad 70% dorosłych doświadcza w jakimś momencie życia traumy, a odsetek osób z PTSD jest w niektórych krajach szacowany nawet na 12% dorosłej populacji. Osoby cierpiące na zespół stresu pourazowego doświadczają, gdy zetką się z bodźcem przypominającym o traumie, silnego trwałego stresu. PTSD diagnozuje się podczas wywiadu klinicznego, jednak jest to metoda podatna na błędy. Dlatego też specjaliści od dawna poszukują obiektywnego fizycznego markera PTSD. Jego znalezienie nie jest jednak łatwe. Autorzy najnowszych badań stworzyli algorytm wykorzystujący metodę nauczania random forest, która pozwala klasyfikować np. osoby na podstawie dostępnych przykładów. W ten sposób, działając najpierw na treningowej bazie danych, sztuczna inteligencja udoskonala swoje modele i metody podejmowania decyzji. Najpierw naukowcy nagrali standardowy wielogodzinny wywiad diagnostyczny CAPS (Clinician-Administered PTSD Scale). Zarejestrowano wywiady z 53 weteranami z Iraku i Afganistanu, u których stwierdzono PTSD oraz z 78 weteranami, u których choroba nie występowała. Następnie materiał dźwiękowy został przetworzony przez oprogramowanie firmy SRI International, tej samej, która opracowała apple'owską Siri, a program wyodrębnił z nagrań 40 526 cech, które następnie były analizowane pod kątem występowania wzorców. Sztuczna inteligencja była w stanie powiązać poszczególne cechy z PTSD. Były wśród nich na przykład mniej wyraźna mowa czy pozbawiony życia metaliczny ton głosu. Wcześniej wiedziano o tych dwóch cechach, ale były one jedynie anegdotycznie uznawane za pomocne w diagnostyce. Diagnoza PTSD na podstawie głosu może o tyle mieć uzasadnienie, że teoria dotycząca przyczyn zespołu stresu pourazowego mówi, iż traumatyczne wydarzenia zmieniają połączenia między neuronami odpowiedzialnymi za przetwarzanie emocji i oraz za napięcie mięśniowe, co może wpływać na sposób artykulacji. Mowa jest atrakcyjnym kandydatem dla automatycznego systemu diagnostycznego, gdyż może być ona mierzona i badana w sposób tani, nieinwazyjny i zdalny, mówi główny autor badań, profesor Adam D. Brown. Możliwości analizy głosu stosowane w obecnych badaniach nad PTSD pokrywają się z możliwościami naszem platformy analitycznej SenSay Analytics. Oprogramowanie to analizuje słowa, częstotliwość, rytm, ton oraz cechy charakterystyczne artykulacji i na tej podstawie wyciąga wnioski co do stanu mówiącego, w tym co do jego stanu emocjonalnego, uczuciowego, poznawczego, zdrowotnego, zdrowia psychicznego i zdolności komunikacyjnych, dodaje Dimitra Vergyri z SRI International. « powrót do artykułu
  2. Na całym świecie niemal połowa dzieci chorujących na nowotwory nie zostaje zdiagnozowana. Badacze, którzy przeanalizowali dane Światowej Organizacji Zdrowia (WHO) szacują, że w 2015 roku na nowotwory zachorowało 397 000 dzieci poniżej 15. roku życia, a 43% z nich pozostało niezdiagnozowanych. To znacznie więcej, niż oficjalne dane poszczególnych rządów, co oznacza, że każdego roku dziesiątki tysięcy dzieci nie jest leczonych, chorują i potencjalnie umierają z powodu choroby, o której nie wiedzą. Dotychczasowe szacunki mówiły, że każdego roku na świecie diagnozuje się około 200 000 przypadków nowotworów u dzieci. Światową liczbę zachorowań bardzo trudno jest ocenić. Na przykład w Afryce Zachodniej jedynie Mali i Kamerun prowadzą publicznie dostępne rejestry zapadalności dzieci na raka. Nawet w krajach, gdzie takie dane są dostępne, wiele przypadków mogło pozostać nieudokumentowanych. Wiele dzieci nie ma dostępu do podstawowej opieki zdrowotnej, nie mają dostępu do onkologów, pozostają niezdiagnozowane, mówi współautor badań, Zachary Ward z Uniwersytetu Harvarda. Specjaliści oszacowali, że w latach 2015–2030 na całym świecie bez diagnozy pozostanie niemal 3 miliony dzieci chorujących na nowotwory. Najlepsza sytuacja jest w Ameryce Północnej oraz w Europie. Wedle szacunków w 2015 roku w Ameryce Północnej na nowotwory zachorowało 10 900 dzieci poniżej 15. roku życia, z czego 3% pozostało niezdiagnozowanych. W tym samym czasie liczba chorych w Europie sięgnęła 4300, w tym 3% niezdiagnozowanych. Najgorsza sytuacja panuje w Azji Wschodniej, gdzie niezdiagnozowanych zostało 49% ze 137 000 przypadków nowotworów oraz w Afryce Zachodniej (76 000 zachorowań, 57% niezdiagnozowanych). Z szacunków wynika, że w latach 2015–2030 na nowotwory zapadnie 6 700 000 dzieci, z czego 43% nie zostanie zdiagnozowanych. Ward i jego koledzy, by oszacować liczbę niezdiagnozowanych dzieci, opracowali model, w którym wykorzystali dane WHO dotyczące dostępu do opieki w czasie ciąży i szczepień oraz liczby dzieci leczonych na zapalenia płuc i biegunkę. To pozwoliło na ocenę dostępu do opieki zdrowotnej. Naukowcy wykorzystali też dane dotyczące dochodów i odsetka populacji mieszkającej w miastach. Uzyskane wyniki porównano z rzeczywistymi danymi na temat zachorowalności dzieci na raka i odpowiednio skorygowano model. « powrót do artykułu
  3. Rak trzustki to jeden z najbardziej śmiertelnych nowotworów. Jest trudny do zdiagnozowania, gdyż na początkowych stadiach nie daje widocznych oczywistych objawów. Diagnozowany jest najczęściej w zaawansowanym stadium, dlatego też jedynie około 8,5% pacjentów przeżywa dłużej niż 5 lat od czasu diagnozy. Naukowcy z Van Andel Research Institute opracowali nowy, prosty test z krwi, który  w połączeniu z już istniejącymi testami wykrywa niemal 70% nowotworów trzustki, a odsetek fałszywych pozytywnych wyników wynosi mniej niż 5%. Rak trzustki to agresywna choroba, która ma tendencję do dawania przerzutów jeszcze przed zdiagnozowaniem, przez co jest trudny w leczeniu. Mamy nadzieję, że nasz nowy test, w połączeniu z już istniejącymi testami pozwoli lekarzom na diagnozowanie pacjentów z grupy wysokiego ryzyka jeszcze zanim nowotwór się rozprzestrzeni, mówi jeden z głównych autorów badań profesor Brian Haab. Nowy test, podobnie jak już istniejące, mierzy poziom cukru uwalniany do krwi przez obecne tam komórki raka trzustki. Z tą jednak różnicą, że obecne testy wykonują pomiary z populacji komórek CA-19-9, a nowy test bierze pod uwagę inną populację. Zastosowane razem testy działają zatem szerzej i jest większa szansa, iż wyłapią obecność komórek nowotworowych we krwi. Test CA-19-9 został opracowany przed około 40 laty. Jego skuteczność wynosi zaledwie około 40%. Jest on obecnie używany raczej do potwierdzania już postawionej diagnozy i do śledzenia postępów choroby, a nie do badań przesiewowych. Połączenie nowego testu sTRA z CA-19-9 nadaje się do prowadzenia badań przesiewowych i wczesnej diagnostyki, szczególnie u osób z grupy podwyższonego ryzyka. Osoby takie to te, w których rodzinie występował rak trzustki, które cierpią na chroniczne zapalenie trzustki, u których zdiagnozowano torbiel na trzustce oraz te ze zdiagnozowaną w późniejszych dekadach życia cukrzycą typu 2. Pojawia się bowiem coraz więcej dowodów na to, że zachorowanie na cukrzycę po 50. rokiem życia może być wczesnym objawem nowotworu trzustki. Cukrzyca, która pojawiła się wcześniej nie jest obecnie uznawana za czynnik ryzyka raka trzustki. Obecnie istnieje niewiele narzędzi diagnostycznych, które można zastosować u ludzi z podwyższonym ryzykiem raka trzustki. Połączenie obu wspomnianych testów może być prostą tanią metodą na wczesną diagnozę, która polepszy rokowania pacjenta, mówi Haab. « powrót do artykułu
  4. Przed czterema laty informowaliśmy, że na University of Oxford powstaje oprogramowanie, która na podstawie wyglądu twarzy ma rozpoznawać rzadkie choroby genetyczne i zdiagnozowało zespół Marfana u prezydenta Lincona. Nie tylko jednak Brytyjczycy pracują nad takim oprogramowaniem. W najnowszym numerze Nature Medicine opisano aplikację Face2Gene. Wykorzystuje ona algorytmy maszynowego uczenia się oraz sieci neuronowe do klasyfikowania charakterystycznych ech twarzy świadczących o zaburzeniach rozwoju płodowego i układu nerwowego. Aplikacja na podstawie zdjęcia stawia prawdopodobną diagnozę i wymienia inne, mniej prawdopodobne. Autorem oprogramowania jest firma FDNA z Bostonu. Jej specjaliści najpierw nauczyli aplikację odróżniać zespół Cornelii de Lange i zespół Angelmana, które przejawiają się charakterystycznymi cechami twarzy, od innych podobnych schorzeń. Nauczyli go też klasyfikowania różnych form genetycznych syndromu Noonana. Następnie algorytmowi dano dostęp do ponad 17 000 zdjęć zdiagnozowanych przypadków obejmujących 216 schorzeń. Gdy następnie oprogramowanie miało do czynienia z zupełnie nową fotografią, potrafiło z 65-procentowym prawdopodobieństwem postawić prawidłową diagnozę. Gdy zaś mogło podjąć kilka prób, odsetek prawidłowych diagnoz zwiększał się do 90%. FDNA chce udoskonalić swoją technologię, jednak w tym celu potrzebuje dostępu do większej ilości danych. Dlatego też Face2Gene jest bezpłatnie dostępna dla lekarzy i badaczy, którzy wykorzystują ten system do pomocy w diagnostyce rzadkich schorzeń genetycznych. Korzystają z niego też lekarze, którzy nie mają punktu zaczepienie i w ogóle nie potrafią wstępnie zdiagnozować pacjenta. Współautorka artykułu na temat Face2Gene, Karen Gripp, jest genetykiem w szpitalu dziecięcym w stanie Delaware i głównym lekarzem w firmie FDNA. Mówi ona, że algorytm pomógł jej w zdiagnozowaniu dziewczynki, którą leczy od sierpnia. Dzięki niemu doktor Gripp stwierdziła, że dziecko cierpi na zespół Wiedemanna-Steinera. Czterolatka nie ma zbyt wielu cech charakterystycznych tej choroby. Jest niska jak na swój wiek, straciła większość zębów mlecznych i zaczęły jej rosną stałe zęby. Gripp postawiła wstępną diagnozę, a następnie zaprzęgła do pracy Face2Gene. Zespół Wiedemanna-Steinera, bardzo rzadkie schorzenie spowodowane mutacją genu KTM2A, został przez aplikację wymieniony na czele listy prawdopodobnych schorzeń. Badania DNA potwierdziły diagnozę. Uczona mówi, że dzięki aplikacji mogła zawęzić liczbę potencjalnych chorób i uniknąć konieczności znacznie droższego szeroko zakrojonego badania DNA. Face2Gene powoli staje się coraz doskonalszy. Obecnie program ma do dyspozycji już 150 000 fotografii na podstawie których się uczy. W sierpniu, podczas warsztatów dotyczących wad genetycznych przeprowadzono nieoficjalne porównanie algorytmu i lekarzy. Wzięło w nim udział 49 genetyków klinicznych. Ludzie i algorytm mieli do dyspozycji 10 zdjęć dzieci z dość dobrze rozpoznawalnymi cechami charakterystycznymi różnych chorób. Tylko w przypadku dwóch fotografii dobrą diagnozę postawiło ponad 50% ludzi. Face2Gene dobrze zdiagnozował 7 na 10 przypadków. Polegliśmy całkowicie. Face2Gene był niesamowity, mówi Paul Kruszka, genetyk z US National Human Genome Research Institute. Jego zdaniem już wkrótce każdy pediatra i genetyk będzie miał tego typu aplikację i używał jej równie często jak stetoskopu. « powrót do artykułu
  5. Możliwe, że już w niedalekiej przyszłości test z krwi przyspieszy postawienie diagnozy i wdrożenie leczenia u dzieci z chorobą afektywną dwubiegunową (ChAD). Naukowcy z Uniwersytetu Stanowego Ohio odkryli, że w porównaniu do zdrowych rówieśników, dzieci z ChAD mają w osoczu wyższy poziom białka wiążącego witaminę D (ang. Vitamin D Binding Protein, VDBP). Jak podkreśla prof. Ouliana Ziouzenkova, obecnie średni czas upływający od początku choroby do postawienia poprawnej diagnozy wynosi w przypadku dzieci aż 10 lat. Podczas badań z udziałem 36 młodych osób Amerykanie zauważyli, że u chorych na zaburzenie afektywne dwubiegunowe poziom VDBP był aż o 36% wyższy. Wyniki trzeba, oczywiście, potwierdzić w kolejnych badaniach, ale Ziouzenkova już teraz odnosi się bardzo entuzjastycznie do potencjału markera. Dziecięce zaburzenie afektywne dwubiegunowe może być bardzo trudne do odróżnienia od innych chorób, zwłaszcza u osób z pewnymi typami depresji - dodaje  prof. Barbara Gracious. Wrażliwe i specyficzne biomarkery dałyby lekarzom większą pewność w zakresie wyboru najlepszego leczenia. Skróciłyby także czas upływający do postawienia właściwej diagnozy. Autorzy publikacji z pisma Translational Psychiatry wyjaśniają, że kliniczną część pilotażowych badań przeprowadzono w Harding Hopsital. W studium wzięło udział 13 dzieci bez zaburzeń nastroju, 12 dzieci ze zdiagnozowaną ChAD oraz 11 dzieci z tzw. dużą depresją (ang. major depressive disorder, MDD). Ziouzenkova wyjaśnia, że jej zespół interesował się VDBP, bo białko to może potencjalnie odgrywać rolę w zapaleniu mózgu. Amerykanie analizowali także poziom markerów zapalnych we krwi, ale nie odkryli innych istotnych korelacji. Profesor dodaje, że przyglądanie się poziomowi witaminy D zamiast VDBP wydaje się nie mieć znaczenia diagnostycznego. Chcieliśmy się skupić na czynnikach, które mogą się wiązać z zaburzeniami nastroju na poziomie molekularnym i które będzie łatwo wykryć we krwi. « powrót do artykułu
×
×
  • Create New...