Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Komórki nowotworowe ściskają i się rozprzestrzeniają

Recommended Posts

Komórki guza odbijają terytorium sąsiadom za pomocą nowo odkrytego mechanizmu. W pewnym sensie przypomina on zapasy.

Mimo wielu lat badań naukowcy nadal nie umieją powiedzieć, co się dokładnie dzieje od momentu pojawienia grupy nieprawidłowych komórek do powstania klinicznie wykrywalnej masy guza. Sugerowano, że pewne mutacje dają zmienionym komórkom konkurencyjną przewagę, pozwalając im zabić i zastąpić sąsiadów. To właśnie ten proces miałby zapoczątkowywać powstanie guza. Nikt jednak nie wiedział, jakie mechanizmy leżą u podłoża tej rywalizacji.

Naukowcy z Instytutu Pasteura i Champalimaud Centre for the Unknown odkryli właśnie mechanizm, który może wyjaśnić, w jaki sposób komórki nowotworowe eliminują zdrowych sąsiadów i rozprzestrzeniają się po organizmie.

Dwa lata temu Eduardo Moreno z Champalimaud Centre for the Unknown i Romain Levayer z Instytutu Pasteura zidentyfikowali nową formę rywalizacji między komórkami. Nazwali ją współzawodnictwem mechanicznym. M.in. podczas normalnego rozwoju istnieją fazy, kiedy tkanki stają się nadmiernie zatłoczone. Dlatego pewne komórki są eliminowane.

Sądzono, że są one wypychane na drodze wytłaczania (ekstruzji) żywych komórek. Okazało się jednak, że to nieprawda i komórki wcale nie są wypychane żywe, ale aktywnie zabijane na drodze nieznanej wcześniej postaci rywalizacji. Gdy zablokowaliśmy szlak programowanej śmierci komórkowej, komórki mogły być ściskane i rozprężane, ale nie były wypychane ani nie umierały. Wtedy właśnie zdaliśmy sobie sprawę, że musi istnieć inny, mechaniczny, typ konkurencji, w ramach której komórki w jakiś sposób wyczuwają rosnące ciśnienie i wykorzystują je do eliminowania sąsiadów - wyjaśniają Moreno i Levayer.

Mechanizm molekularny, który prowadzi do eliminowania skompresowanych komórek, został opisany na łamach Current Biology. Naukowcy skupili się na tkance nabłonkowej. Nabłonek to najbardziej rozpowszechniona tkanka w naszym ciele. Składa się z warstw komórek, które tworzą barierę odgradzającą zewnętrze od wnętrza. Większość ludzkich guzów (ok. 90%) powstaje właśnie z nabłonka - podkreśla Levayer.

Pracując na nabłonku muszek owocowych (Drosophila melanogaster), akademicy wykazali, że mechaniczny stres oddziałuje na szlak EGFR/ERK, który reguluje przeżycie komórek.

Portugalczycy i Francuzi zauważyli, że gdy zdrowe komórki były ściskane przez komórki nowotworowe, sprzyjający przeżyciu sygnał EGFR/ERK słabł. Gdy szlak był w ściskanych zdrowych komórkach sztucznie aktywowany, nie dochodziło do ich eliminacji, a ekspansja komórek guza ulegała spowolnieniu.

Czemu zmienione chorobowo komórki wygrywają rywalizację z komórkami zdrowymi, mimo że obie grupy są poddawane działaniu tych samych sił? Naukowcy wyjaśniają, że te pierwsze mają zablokowane szlaki samoeliminacji (szlaki apoptyczne są zmutowane). Dodatkowo często bardziej się namnażają.

Zidentyfikowanie szlaku, który odpowiada za wyczuwanie deformacji i uruchamia eliminację komórek, to ważny krok naprzód. Wydaje się, że można by zapobiegać eliminacji zdrowych komórek otoczonych przez guz, nie dopuszczając do zmniejszenia aktywacji szlaku [EGFR/ERK].

W przyszłości naukowcy chcą sprawdzić, jak bardzo rozpowszechniony jest to mechanizm i na ile został on utrwalony u ssaków.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy odkryli obiecującą kombinacje lekarstw, które mogą pomagać dzieciom cierpiących na śmiertelne rozlane glejaki linii pośrodkowej (DMGs). Wśród tych niezwykle złośliwych nowotworów znajdują się rozlany glejak pnia mózgu (DIPG), glejak wzgórza czy glejak rdzenia kręgowego. Uczeni z Narodowych Instytutów Zdrowia (NIH), Uniwersytetu Stanforda i Diana-Farber Cancer Institute odkryli połączenie leków, które zabijają komórki nowotworowe i przeciwdziałają mutacji genetycznej, która leży u podłoża tych chorób.
      Badania przeprowadzone na komórkach ludzkich oraz modelach zwierzęcych wykazały, że połączenie panobinostatu i marizomibu skuteczniej zabija komórki nowotworowe niż każdy z tych leków z osobna. Jednocześnie odkryto nieznaną dotychczas słabość komórek nowotworowych, którą może uda się wykorzystać w przyszłości do ich zaatakowania.
      DMGs to bardzo agresywne trudne w leczeniu nowotwory. Są główną przyczyną śmierci dzieci cierpiących na nowotwory mózgu w USA. Każdego roku w Stanach Zjednoczonych diagnozuje się kilkaset przypadków DMGs u dzieci w wieku 4–12 lat. Większość z pacjentów umiera w ciągu roku od postawienia diagnozy.
      DMGs są spowodowane specyficzną mutacją w genach histonów. O jej odkryciu informowaliśmy przed rokiem. Histony to białka wchodzące w skład jądra komórkowego. Nici DNA owijają się wokół histonów tworząc chromatynę. O tym, w jaki sposób DNA zawija się i rozwija wokół histonów, decydują enzymy, w tym deacetylazy histonowe.
      Podczas wcześniejszych badań neuroonkolog doktor Michell Monje ze Stanforda wykazała, że panobinostat, który blokuje kluczowe enzymy deacetylazy histonowej, może u pacjentów z DIPG przywrócić niemal normalne działanie histonów. Na razie panobinostat znajduje się na wczesnym etapie badań klinicznych w zastosowaniach DIPG, jednak już wiadomo,że użyteczność tego leku może być ograniczona, gdyż komórki nowotworowe są w stanie nauczyć się go unikać. Dlatego też Monje i jej zespół postanowili poszukać innych leków lub ich kombinacji, które zwalczałyby nowotwór.
      Niewiele nowotworów może być leczonych jednym lekiem, mówi doktor Monje, która specjalizuje się w leczeniu DMGs. Od dawna wiemy, że potrzebujemy więcej niż jednego leku na DIPG. Problemem jest znalezienie tych odpowiednich w sytuacji, gdy mamy do dyspozycji tysiące potencjalnych kandydatów.
      Monje poprosiła o pomoc Katherine Warren z National Cancer Institute oraz naukowców z NIH, Dana-Farber Cancer Institute oraz Boston Childern's Hospital. Uczeni zaczęli testować różne leki, by odnaleźć te, która mogą zwalczać komórki DIPG. Testowali tysiące leków i ich połączeń, określali ich dawki efektywne i sprawdzali sposób działania. Musieli przy tym znaleźć te leki, które są w stanie przeniknąć przez barierę krew-mózg.
      Zidentyfikowano wiele potencjalnie skutecznych substancji, ale uczeni skoncentrowali się na inhibitorach deacetylazy histonowej (jak panobinostat) oraz inhibitorach proteasomów (jak marizomib). Te drugie leki blokują proces recyklingu protein.
      Okazało się, że połączenie panobinostatu z marizomibem jest wysoce toksyczne dla wielu typów komórek DIPG. Kombinację tę zbadano na głównych genetycznych podtypach DIPG oraz przetestowano na myszach, których wszczepiono komórki nowotworowe. U myszy doszło do zmniejszenia guzów i wydłużenia życia. Podobne działanie zaobserwowano nie tylko w przypadku DIPG, dla na laboratoryjnych hodowlach komórek glejaka wzgórza i glejaka rdzenia kręgowego.
      Naukowcom udało się też opisać mechanizm działania leków. Komórki DIPG reagowały na połączenie obu leków wyłączając w swoich mitochondriach proces biorący udział w powstawaniu ATP, związku zapewniającego komórkom energię. Połączenie panobinostatu i marizomibu ujawniło istnienie nieznanej dotychczas metabolicznej słabości w komórkach DIPG. Nie spodziewaliśmy się znaleźć czegoś takiego. To obiecujący obszar badań nad przyszłymi lekami, mówi doktor Grant Lin.
      Naukowcy planują teraz rozpoczęcie testów klinicznych połączonych leków oraz samego marizomibu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Yale odkryli w ludzkim genomie hiperhotspoty, czyli miejsca, które są o wiele wrażliwsze na promieniowanie ultrafioletowe (UV). Ponieważ ekspozycja na UV to główna przyczyna nowotworów skóry, skryning hiperhotspotów może stanowić nową metodę oceny jednostkowego ryzyka wystąpienia tych chorób.
      Autorzy artykułu z pisma PNAS podkreślają, że w hiperhotspotach aż 170-krotnie częściej pojawiają się cyklobutanowe dimery pirymidynowe (ang. cyclobutane pyrimidine dimer, CPD); porównań dokonywano dla średniej genomowej. Amerykanie wyjaśniają, że mogą one działać jak cele na tarczach strzelniczych, które "przyciągają" uszkadzające promieniowanie. Zespół zauważył, że najczęściej hiperhotspoty występują w melanocytach, z których wywodzi się czerniak złośliwy.
      Myśleliśmy, że uszkodzenia DNA i mutacje, które wywołują nowotwory to rzadkie i losowe zdarzenia. Nasze wyniki pokazują jednak, że przynajmniej w przypadku nowotworów skóry, w genomie istnieją specyficzne cele, które tylko czekają, aż zadziała na nie UV - opowiada Douglas Brash.
      By je wykryć, naukowcy zaprojektowali metodę znakowania miejsc z CPD. Później wykorzystali wysoko wydajną technikę sekwencjonowania, która pozwoliła zmapować tagi w genomie.
      Ku swojemu zaskoczeniu, Amerykanie stwierdzili, że hiperhotspoty były nieproporcjonalnie często zlokalizowane w pobliżu genów, a zwłaszcza genów kodujących białka posiadające zdolność wiązania RNA (ang. RNA-binding proteins, RBPs); warto dodać, że RBPs pełnią funkcje regulatorowe i determinują wybór miejsca splicingowego przez spliceosom (splicing, inaczej składanie genów, to usunięcie intronów, sekwencji niekodujących, i połączenie eksonów, sekwencji kodujących, z prekursorowego mRNA).
      Przy ekspozycji na UV na poziomie oparzeń słonecznych promieniowanie ultrafioletowe podziała na hiperhotspoty. Człowiek doświadczy specyficznych, wywołanych UV, zaburzeń wzrostu komórki. Nie będzie to zjawisko nieprzewidywalne/zachodzące losowo, w dodatku tygodnie czy lata później, jak wcześniej sądzono.
      Wyjaśniając, czemu natura nie wyeliminowała hiperhotspotów, Brash zaznacza, że może tak być dlatego, że komórki używają ich do wyczuwania środowiska.
      Istnienie hiperhotspotów sugeruje, że mutacje wywołane przez karcynogen (UV bądź inny czynnik) nie są całkowicie losowe.
      Badanie akademików z Yale wskazuje na nowe sposoby określania ryzyka nowotworów skóry. Jak wiadomo, najważniejsza jest ocena wcześniejszego wystawienia na oddziaływanie UV. Obecnie lekarzom brakuje obiektywnych sposób pomiaru, zazwyczaj polegają więc na pamięci pacjentów. Gdyby dało się pobrać niewielką próbkę skóry i zbadać hiperhotspoty, można by uzyskać prawdziwe dane nt. uszkodzenia DNA przez uprzednie oparzenia. Osoby z grupy wysokiego ryzyka podlegałyby zaś stałemu monitoringowi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Pewne grzyby przenoszą się z jelita do trzustki, zwiększają swoją populację ponad 1000-krotnie i sprzyjają wzrostowi komórek nowotworowych. Opublikowane w Nature badania jako pierwsze zapewniają silne dowody, że mykobiom (społeczność grzybów z trzustki) może wyzwalać zmiany, które przekształcają normalne komórki w przewodowego gruczolakoraka trzustki (ang. pancreatic ductal adenocarcinoma, PDA).
      Badania przeprowadzone na myszach i pacjentach z rakiem trzustki pokazały, że grzyby przemieszczają się do trzustki przez przewód trzustkowy, który odprowadza z trzustki sok trzustkowy.
      Zespół z Uniwersytetu Nowojorskiego (NYU) zauważył także, że podawanie myszom silnego leku przeciwgrzybicznego zmniejszało w ciągu 30 tygodni wagę guza (PDA) o 20-40%.
      O ile wcześniejsze badania naszego zespołu pokazały, że bakterie przemieszczają się z jelita do trzustki, o tyle najnowsze studium po raz pierwszy potwierdza, że grzyby także odbywają takie wyprawy. Ponadto [wykazaliśmy, że] związane z tym zmiany populacji grzybów sprzyjają zapoczątkowaniu i wzrostowi guza - podkreśla dr George Miller.
      Zespół z NYU dodaje, że choć Amerykańskie Towarzystwo Onkologiczne uznaje za przyczyny raka trzustki wirusy, bakterie i pasożyty, żadne z wcześniejszych badań nie połączyło z tą chorobą grzybów.
      By ustalić, czy mykobiom jest reprogramowany, gdy prawidłowe komórki zmieniają się w nowotworowe (gdy zachodzi nowotworzenie), przez 30 tyg. badano próbki kału myszy zdrowych i z rakiem trzustki. By zidentyfikować i zliczyć obecne gatunki grzybów, naukowcy przeprowadzili analizy genomiczne i statystyczne. Żeby prześledzić migracje przez jelito i trzustkę, grzyby znakowano fluorescencyjnymi białkami.
      Naukowcy zaobserwowali znaczące różnice w wielkości i składzie populacji grzybów zdrowej i zmienionej chorobowo trzustki. Największy wzrost populacji (zarówno u myszy, jak i w ludzkich tkankach) stwierdzono w przypadku rodzaju Malassezia. Nieprawidłowo podwyższona liczebność występowała również w przypadku rodzajów Parastagonospora, Saccharomyces i Septoriella.
      Od dawna wiadomo, że grzyby z rodzaju Malassezia, które generalnie występują na skórze, w tym na skórze głowy, są odpowiedzialne za łupież i niektóre postaci egzemy. Ostatnie badania powiązały je jednak dodatkowo z nowotworami skóry i jelita grubego. Nasze nowe ustalenia dostarczają dowody, że dużo grzybów Malassezia występuje również w guzach trzustki - opowiada prof. Deepak Saxena.
      By przetestować wpływ zmieniających się grzybowych populacji na nowotwór, akademicy przeleczyli myszy amfoterycyną B (antybiotykiem przeciwgrzybicznym o szerokim spektrum działania). Okazało się, że masa guza spadła, o 20-30% zmniejszyła się też częstość występowania dysplazji.
      Wyeliminowanie grzybów o 15-25% wzmocniło także antynowotworowy wpływ standardowej chemioterapii gemcytabiną - dodaje dr Berk Aykut.
      Gdy trzustki myszy zostały w większości oczyszczone z grzybów przez leczenie, zespół badał, co się stanie z guzem, jeśli na zasiedlenie narządu pozwoli się tylko pewnym gatunkom grzybów. Okazało się, że guz rósł 20% szybciej w trzustkach ponownie zasiedlonych Malassezia (nie działo się tak jednak w obecności innych często występujących grzybów).
      Amerykanie tłumaczą, że grzyby zwiększają ryzyko raka, aktywując układ dopełniacza; wcześniejsze badania wykazały bowiem, że w obecności pewnych nieprawidłowości genetycznych dopełniacz sprzyja agresywnemu wzrostowi tkanki.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Czy leczenie nowotworów bez chemio- czy radioterapii, nawet bez chirurgii jest możliwe? Biofizyk Khaled Barakat z University of Alberta pracuje nad innowacyjnymi immunoterapiami, które mają zwalczać wiele rodzajów raka dzięki pigułkom wzmacniającym układ odpornościowy. Na określenie tego pomysłu używamy słowa 'magia', gdyż koncepcja zakłada, że terapia nie jest związana z żadnym konkretnym nowotworem. Ma ona radzić sobie z problemami związanymi z każdym rodzajem nowotworów, stwierdza uczony.
      Po raz pierwszy o poszukiwaniu „magicznej pigułki” na raka Barakat poinformował przed czterema laty, gdy Alberta Cancer Foundation i Li Ka Shing Applied Virology Institute rozpoczęły warty 5,4 miliona dolarów projekt badawczy. Barakat stanął na czele zespołu złożonego z wybitnych onkologów, wirusologów, immunologów, chemików i farmaceutów. Do pomocy zaprzęgnięto też jeden z najszybszych superkomputerów na świecie Blue Gene/Q.
      Teraz, po czterech latach badań, zespół naukowy ogłosił, że wpadł na trop molekuły, która potencjalnie może posłużyć do stworzenia „magicznej pigułki”. To potężna molekuła. Wstępnie potwierdza, że dobrze wybraliśmy kierunek badań. A dzięki wytężonej pracy całego zespołu dokonujemy obiecujących postępów w badaniach nad kolejną molekułą, która ma inny cel, stwierdza Barakat.
      Nowotwory wykorzystują punkty kontrolne układu odpornościowego. To rodzaj molekularnych hamulców, które zapobiegają nadmiernej reakcji układu odpornościowego. Niektóre nowotwory potrafią aktywować wiele takich punktów, przez co rozwijający się guz nie jest atakowany przez limfocyty T.
      W ostatnich latach wielu specjalistów skupiło się na poszukiwaniu przeciwciał, które omijałyby punkto kontrolne i rekatywowały limfocyty T. W ubiegłym roku dwaj naukowcy, James Allison i Tasuku Honjo, otrzymali medycznego Nobla za badania nad sposobami walki z nowotworami z wykorzystaniem punktów kontrolnych układu immunologicznego. Terapia za pomocą przeciwciał monoklonalnych na zawsze zmieniło immunoterapię przeciwnowotworową.
      Jednak tego typu terapie obarczone są ryzykiem. Przeciwciała to duże molekuły, które mogą pozostawać w organizmie całymi miesiącami, co zwiększa prawdopobieństwo, że układ odpornościowy zacznie atakować własny organizm, niszcząc tkanki i narządy. Ponadto terapie za pomocą przeciwciał są kosztowne i skomplikowane.
      Barakat i jego zespół spędzili ostatnie cztery lata na próbach stworzenia, za pomocą komputera Blue Gene/Q małej molekuły, która reaktywowałaby unieruchomiony przez nowotwór układ odpornościowy i nie niosła ze sobą ryzyka powikłań. Gdy już stworzyli taką wirtualną molekułę, zsyntetyzowali ją.
      Ta już stworzona molekuła ma oddziaływać na punkt kontrolny PD-1 i powodować, że układ odpornościowy zaatakuje komórki czerniaka. Jednocześnie trwają prace nad drugą molekułą, oddziałującą na punkt kontrolny CTLA-4. Punkt PD-1 hamuje proliferację limfocytów T i wytwarzanie cytokin, z kolei CTLA-4 hamuje aktywację limfocytów T.
      Olbrzymią zaletą opracowywanych molekuł jest fakt, że organizm pozbywa się ich w ciągu godzin. Ponadto, jako że są zancznie mniejsze niż przeciwciała, mogą wniknąć głębiej w tkankę. Prawdopodobnie można je będzie również tanio wytwarzać i podawać w formie pigułki. A jako, że za cel biorą punkty kontrolne, mogą potencjalnie służyć do walki z wieloma rodzajami nowotworów, od czerniaka i raka piersi, poprzez chłoniaka po raka mózgu.
      Barakat i jego zespół założyli już firmę, której zadaniem jest wyjście poza uniwersyteckie badania laboratoryjne i rozpoczęcie testów na zwierzętach. Mają nadzieję, że uzyskają dofinansowanie od firmy farmaceutycznej, dzięki czemu będą mogli zatrudnić „armię chemików”. Zadaniem tego zespołu, na którego czele miałby stanąć chemik Frederick West, będzie stworzenie kilku tysięcy analogów i derywatów wspomnianych molekuł oraz ich przetestowanie. W ten sposób uczeni powinni znaleźć molekułę o optymalnej budowie. Taką, która nie tylko będzie spełniała postawione przed nią zadania, ale będzie też odpowiednio rozpuszczalna, silna i miała możliwe najniższą toksyczność. To jak układanie kostki Rubika. Mamy działające rozwiązanie. Teraz musimy wszystko odpowiednio poskładać. Aby to zrobić potrzebujemy zespołu 60 chemików. Obecnie mamy ich 4-5, stwierdza Barakat.
      Nowo założona firma nazywa się HEKA Therapeutics. Heka był bogiem magii w starożytnym Egipcie. Magia jest wymagająca, ale możliwa, mówi Barakat.
      Ze szczegółami badań można zapoznać się w Scientific Reports.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Terapia przeciwnowotworowa, której celem było usunięcie guza bez potrzeby odwoływania się do radio- i chemioterapii czy chirurgii, pomyślnie przeszła kolejny etap badań klinicznych. Rok po leczeniu u 13 z 15 pacjentów cierpiących wcześniej na nowotwór prostaty, nie wykryto śladów choroby.
      Terapia, opracowana na Rice University, jest prawdopodobnie pierwszą fototermalną terapią przeciwnowotworową, której pozytywne wyniki zostały opublikowane w piśmie recenzowanym. Jej opis ukazał się na łamach PNAS.
      W badaniach wzięło udział 16 mężczyzn w wieku 58–79 lat ze zlokalizowanym rakiem prostaty stwarzającym niskie i średnie ryzyko wzrostu i przerzutowania. Terapia polegała na zlokalizowanej ablacji za pomocą nanocząstek złota. Piętnastu pacjentom pierwszego dnia dożylnie podano nanocząstki złota, a drugiego dnia przeprowadzono zabieg ablacji. Wszyscy tego samego dnia wrócili do domu. Po 3, 6 i 12 miesiącach po zabiegu przeprowadzono badania pod kątem występowania u nich nowotworu. Jedynie u 2 z 15 mężczyzn wykryto guza.
      Wstrzyknięcie nanosfer ze złota i krzemu pozwoliło na precyzyjne usunięcie guza i oszczędzenie reszty prostaty. W ten sposób uniknęliśmy niekorzystnych skutków ubocznych i poprawiliśmy komfort życia pacjentów, którzy po tradycyjnych zabiegach mogliby mieć m.in. problemy z erekcją czy utrzymaniem moczu, powiedział główny autor badań, profesor Ardeshir Rastinehad.
      Badania kliniczne wciąż trwają i dotychczas wzięło w nich udział 44 pacjentów leczonych Nowym Jorku, Teksasie i Michigan.
      Autorkami nowej terapii są inżynier Naomi Halas i bionżynier Jennifer West. Przed około 20 laty postanowiły one skupić się na terapii bazującej na nanocząstkach i od około roku 2000 nad takim rozwiązaniem pracowały.
      Same nanocząstki, krzemowe sfery pokryte złotem, zostały stworzone przez Halas w 1997 roku. Uczona wykazała, że zmieniając grubość warstwy złota można spowodować, że nanocząstki będą reagowały na światło o różnej długości fali. Około 2000 roku wraz z West opracowała sposób niszczenia komórek nowotworowych poprzez podgrzanie nanocząstek za pomocą lasera o niskiej mocy pracującego w bliskiej podczerwieni. Ten zakres fali światła penetruje tkanki nie czyniąc im krzywdy. Panie zyskały rozgłos i założyły firmę Nanospectra Biosciences, której celem było przystosowanie nowej terapii do zastosowań klinicznych. W tym samym czasie ojciec pani Halas zachorował na nowotwór prostaty i widząc, jak cierpi w wyniku skutków ubocznych leczenia, uczona zdecydowała, że będzie prowadziła badania nanocząstek pod kątem opracowania terapii bez skutków ubocznych.
      Prace trwały tak długo m.in. z tego powodu, że West i Halas stworzyły zupełnie nową technologię i Agencja ds. Żywności i Leków (FDA) nie wiedziała, jak się do niej odnieść. To były pierwsze nanocząstki, które rzeczywiście nadawały się do wprowadzenia do ludzkiego organizmu. Miałyśmy coś, co wyglądało jak kroplówka. FDA nie wiedziała, czy traktować je jak lek czy jako urządzenie. W pewnym momencie w FDA zastanawiano się nawet nad stworzeniem osobnego wydziału zajmującego się nanoterapiami, wspomina West.
      W końcu agencja zdecydowała się na regulowanie nowej terapii i uznanie jej za leczenie urządzeniem. Przed około 10 lat rozpoczęły się pierwsze testy kliniczne, których celem była ocena bezpieczeństwa terapii. Testy prowadzono na pacjentach z najbardziej zaawansowanymi stadiami rozwoju nowotworów głowy i szyi. W 2015 roku do obu pań dołączył doktor Rastinehad, który był jednym z autorów nowej techniki precyzyjnego obrazowania nowotworów prostaty. To on zaproponował wykorzystanie tej techniki – łączącej rezonans magnetyczny i ultradźwięki – jako platformy do minimalnie inwazyjnego precyzyjnego leczenia guzów prostaty za pomocą nanocząstek Halas i West.
      Ta praca pokazuje, jakie możliwości stoją za połączonymi siłami inżynierii i medycyny. Pozwalają one na praktyczne zastosowanie nowych technologii w medycynie klinicznej i poprawienie komfortu życia pacjentów, mówi West.

      « powrót do artykułu
×
×
  • Create New...