Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Nowotwór płuc z mutacją EGFR ma piętę achillesową, dzięki której można go pokonać

Recommended Posts

W niektórych nowotworach płuc występuje mutacja proteiny EGFR. Zwykle proteina ta działa jak włącznik i wyłącznik złożonych szlaków molekularnych, które informują komórkę, kiedy może rosnąć i się dzielić, a kiedy nie. Zwykle wszystko działa prawidłowo, jednak gdy dojdzie do mutacji EGFR szklaki molekularne pozostają na stałe włączone, co prowadzi do nadmiernej proliferacji komórek i zamiany ich w komórki nowotworowe.

Dotychczas opracowano już trzy generacje coraz silniejszych leków, które biorą na cel zmutowane EGFR i uruchamiają mechanizm samoniszczenia guza. Jednak zwykle leczenie kończy się tak samo. Nowotwór ustępuje na nie dłużej niż 18 miesięcy, a potem pojawia się na nowo i jest bardziej agresywny oraz odporny na leczenie.

Profesor Sourav Bandyopadhyay z Uniwersytetu Kalifornijskiego w San Francisco (UCSF), autor najnowszych badań, mówi, że dzieje się tak, gdyż komórki nowotworowe potrafią, po pierwszym szoku, jakiego doznają, gdy zostaną zaatakowane przez leki, zmienić sposób swojego działania i stworzyć strategie pozwalające im na przetrwanie i dalszy rozwój. W przypadku nowotworów ze zmutowaną proteiną EGFR dochodzi do takich zmian, po których komórki nowotworowe nie są już uzależnione od EGFR. Bandyopadhyay chciał dowiedzieć się, dlaczego się tak dzieje.

Naukowcy, aby zbadać przyczyny lekooporności, rozpoczęli badania wielu linii komórek nowotworowych ze zmutowanym EGFR i poddawali je działaniu leku osimertinib (Tagrisso) lub rociletinib. Komórki w kulturach zaczęły wymierać po potraktowaniu lekami, jednak po sześciu tygodniach pojawiły się znowu i były oporne na działanie leków.

Po tym, jak komórki nowotworowe przestały reagować na leki atakujące EGFR, naukowcy testowali na nich kolejne 94 leki, by sprawdzić, czy można w jakiś sposób pozbawić je lekooporności. Okazało się, że leki, które biorą na cel proteinę o nazwie Kinaza Aurora A w połączeniu z osimertinibem lub rociletinibem na dobre zabijały komórki nowotworowe, uniemożliwiając ich ponowne pojawienie się.

Podobne wyniki uzyskano, że myszom przeszczepiono lekooporne komórki ludzkiego nowotworu płuc. U zwierząt guzy rozwijały się bez przeszkód gdy leczono je samymi środkami biorącymi na cel EGFR. Jednak przy terapii łączonej z lekami przeciwko Kinazie Aurora A doszło do zmniejszenia się guzów i nie zaobserwowano przy tym skutków ubocznych. Nigdy wcześniej nie łączono Kinazy Aurora z lekoopornością na środki przeciwnowotworowe. To całkowicie nowe podejście, mówi profesor Bandyopadhyay.

Naukowcy odkryli, że sama Kinaza Aurora A nie napędza wzrostu guza. Dlatego też leki biorące wyłącznie ją na cel są nieskuteczne. Kinaza Aurora A pozwala komórkom nowotworowym uniknąć śmierci. Osimertinib i rocilentinib wyłączają zmutowane EGFR. To spowalnia wzrost guza i włącza proces jego śmierci. Wówczas guz zmienia sposób działania i aktywuje Kinazę Aurora A.

Kinaza Aurora A służy więc komórkom nowotworowym jako wyjście awaryjne, pozwalająca na uniknięcie śmierci. Wycisza ona bowiem mechanizmy prowadzące do śmierci, a sygnały z niej płynące są silniejsze, niż sygnały pochodzące z EGFR. Atakując jednocześnie EGFR i Aurorę naukowcy zamknęli komórkom nowotworowym wyjście awaryjne.

Uczeni opracowali nie tylko nową terapię, ale również biomarker, dzięki którym można będzie stwierdzić, którzy pacjenci są podatni na łączoną terapię przeciwko EGFR i Aurorze. Okazało się bowiem, że u pacjentów cierpiących na zaawansowany lekooporny nowotwór płuc ze zmutowanym EGFR występuje zwiększony poziom proteiny TPX2. Naukowcy sądzą, że TPX2, o której wiadomo, iż aktywuje Kinazę Aurora, może pozwolić na określenie, kiedy warto zastosować terapię łączoną.

Profesor Bandyopadhyay i jego zespół chcą teraz postarać się o zgodę na rozpoczęcie badań klinicznych nad łączoną terapią i biomarkerem TPX2.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      AlphaFold, sieć sztucznej inteligencji zbudowana w oparciu o słynny DeepMind dokonała olbrzymiego kroku w kierunku poradzenia sobie z jednym z najpoważniejszych wyzwań nauk biologicznych – określeniem kształtu białek z sekwencji ich aminokwasów. To zmieni medycynę, zmieni bioinżynierię. Zmieni wszystko, mówi Andrei Lupas, biolog ewolucyjny z Instytutu Biologii Rozwojowej im. Maxa Plancka w Tybindze, który oceniał możliwości podobnych programów. Lupas dobrze zna AlphaFold. Program pomógł określić mu strukturę białka, z którym jego laboratorium nie mogło sobie poradzić od dekady.
      Możliwość określenia prawidłowej struktury białek pozwoli zarówno na lepsze zrozumienie życia, jak i na szybsze opracowywanie supernowoczesnych leków. Obecnie znamy 200 milionów białek, ale w pełni rozumiemy strukturę i funkcję niewielkiego ułamka z nich. Jednak nawet opisanie tej niewielkiej liczby dobrze poznanych białek zajęło nauce wiele lat, a do ich badań konieczny był wyspecjalizowany sprzęt warty miliony dolarów.
      AlphaFold pokonał około 100 innych programów, które wraz z nim stanęły do zawodów CASP (Critical Assesment of Structure Prediction). Zawody odbywają się co dwa lata, a AlphaFold wystartował w nich po raz pierwszy w 2018 roku i od razu trafił na szczyt klasyfikacji. Jednak w tym roku jego możliwości zaskoczyły specjalistów. Nie dość, że znacząco wyprzedził konkurencję, to jego osiągnięcia były tak imponujące, iż mogą zwiastować rewolucję w biologii.
      W niektórych przypadkach wyniki uzyskane za pomocą AlphaFold nie różniły się niczym od tych osiąganych za pomocą metod eksperymentalnych stanowiących złoty standard, takich jak krystalografia rentgenowska czy mikroskopia krioelektronowa. Naukowcy mówią, że AlphaFold nie zastąpi – przynajmniej na razie – tych metod, ale już teraz pozwoli na badanie struktur biologicznych w zupełnie nowy sposób.
      Białka to podstawowe budulce organizmów żywych. Odpowiedzialne są za większość procesów zachodzących w komórkach. O tym, jak działają i co robią, decyduje ich struktura 3D. Odpowiedni kształt przyjmują one bez żadnej instrukcji, kierowane jedynie prawami fizyki.
      Od dziesięcioleci główną metodą określania kształtów białek były metody eksperymentalne. Badania tego problemu rozpoczęto w latach 50. ubiegłego wieku korzystając z metod krystalografii rentgenowskiej. W ostatniej dekadzie preferowanym narzędziem badawczym stała się mikroskopia krioelektronowa.
      W latach 80. i 90. zaczęto prace nad wykorzystaniem komputerów do określania kształtu protein. Jednak nie szło to zbyt dobrze. Metody, które sprawdzały się przy jednych białkach nie zdawały egzaminu przy badaniu innych. John Moult, biolog obliczeniowy z University of Maryland, wraz z kolegami wpadł na pomysł zorganizowania CASP, zawodów, które miały uporządkować prace nad wykorzystaniem komputerów do badania kształtów białek. W ramach tych zawodów przed zespołami naukowymi stawia się zadanie określenia właściwej struktury protein, których to struktura została wcześniej określona metodami eksperymentalnymi, ale wyniki tych badań nie zostały jeszcze upublicznione.
      Moult mówi, że eksperyment ten – uczony unika słowa „zawody” – znakomicie przysłużył się badaniom na tym polu, pozwolił na uporządkowanie metod i odrzucenie wielu nieprawdziwych twierdzeń. Tutaj naprawdę możemy przekonać się, która metoda jest obiecująca, która działa, a którą należy odrzucić, stwierdza.
      W 2018 roku na CASP13 po raz pierwszy pojawił się AlphaFold. To algorytm sztucznej inteligencji bazujący na słynnym DeepMind, który pokonał mistrza go Lee Sedola, przełamując kolejną ważną barierę dla sztucznej inteligencji.
      Już w 2018 roku AlphaFold zyskał sobie uznanie specjalistów. Jednak wówczas korzystał z bardzo podobnych technik, co inne programy. Najpierw wykorzystywał metody głębokiego uczenia się oraz dane strukturalne i genetyczne do określenia odległości pomiędzy parami aminokwasów w proteinie, a następnie – już bez użycia SI – wypracowywał „konsensus” dotyczący ostatecznego wyglądu proteiny. Twórcy AlphaFolda próbowali to udoskonalać korzystając z takiego właśnie modelu, ale natrafili na przeszkody nie do pokonania.
      Zmienili więc taktykę i stworzyli sieć sztucznej inteligencji, która wykorzystywała też informacje o fizycznych i geometrycznych ograniczeniach w zawijaniu białek. Ponadto nowy model zamiast przewidywać zależności pomiędzy poszczególnymi aminokwasami miał do zrobienia coś znacznie trudniejszego – przewidzieć ostateczny kształt białka.
      CASP trwa kilka miesięcy. Biorące w nim udział zespoły regularnie otrzymują niezbędne informacje o proteinach lub ich fragmentach – w sumie jest ich około 100 – i mają określić ich strukturę. Wyniki pracy tych zespołów oceniają niezależni eksperci, którzy sprawdzają, na ile wyniki uzyskane na komputerach są zgodne z rzeczywistą strukturą białek określoną wcześniej metodami eksperymentalnymi. Oceniający nie wiedzą, czyją pracę oceniają. Wyniki są anonimizowane. Dane z AlphaFold były w bieżącym roku opisane jako „grupa 427”. Jednak niektóre z przewidywań dostarczonych przez tę grupę były tak dokładne, że wielu sędziów domyśliło się, kto jest autorem pracy. Zgadłem, że to AlphaFold. Większość zgadła, mówi Lupas.
      AlphaFold nie sprawował się równo. Raz radził sobie lepiej, raz gorzej. Ale niemal 2/3 jego przewidywań dorównywało wynikom uzyskanym metodami eksperymentalnymi. Czasami nie było wiadomo, czy różnica wynika z niedoskonałości AlphaFold czy metod eksperymentalnych. Jak mówi Moult, największą różnicę pomiędzy AlphaFold a metodami eksperymentalnymi było widać, gdy rzeczywisty wygląd proteiny określano za pomocą rezonansu jądrowego. Jednak różnica ta może wynikać ze sposobu obróbki surowych danych uzyskanych tą metodą. AlphaFold słabo sobie radził też w określaniu indywidualnych struktur w grupach protein, gdzie kształt białka mógł być zaburzany obecnością innego białka.
      Ogólnie rzecz biorąc średnia wydajność modeli biorących udział w tegorocznym CASP była lepsza niż przed dwoma laty, a za większość postępu odpowiadał AlphaFold. Na przykład tam, gdzie proteiny określano jako średnio trudne najlepsze modele uzyskiwały 75 na 100 możliwych punktów, a AlphaFold uzyskał tam 90 punktów. Przekroczenie granicy 90 punktów uznaje się za dorównanie metodom eksperymentalnym.
      Mohammed AlQuraishi, biolog obliczeniowy z Columbia University, który też brał udział w CASP chwali osiągnięcie AlphaFold: myślę, że trzeba uczciwie powiedzieć, iż osiągnięcie to wstrząśnie dziedziną badania struktur białek. Sądzę, że wielu specjalistów przestanie się tym zajmować, gdyż główny problem został rozwiązany. To olbrzymi przełom, jedno z najważniejszych osiągnięć naukowych, jakie widziałem w swoim życiu.
      O tym, jak wielkie możliwości ma AlphaFold i jak olbrzymia rewolucja może nadchodzić niech świadczy przykład badań, jakie prowadził zespół Andreia Lupasa. Niemcy od dawna próbowali określić strukturę białka pewnej bakterii. Za pomocą krystalografii rentgenowskiej uzyskali surowe dane, jednak ich przełożenie na odpowiednią strukturę wymagało pewnych informacji o kształcie proteiny. Wszelkie próby rozwiązania zagadnienia spaliły na panewce. Spędziliśmy dekadę próbując wszystkiego. Model opracowany przez group 427 dostarczył nam tę strukturę w ciągu pół godziny, mówi Lupas.
      Demis Hassabis, współzałożyciel i szef firmy DeepMind, która obecnie należy do Google'a, mówi, że jego firma dopiero zaczyna rozumieć, czego biolodzy chcą od AlphaFold.
      AlphaFold już zresztą przydaje się w praktyce. Na początku 2020 roku algorytm opisał strukturę kilku białek wirusa SARS-CoV-2. Później okazało się, że przewidywania dotyczące białka Orf3a zgadzają się z wynikami uzyskanymi eksperymentalnie.
      Rozpowszechnienie się AlphaFold raczej nie doprowadzi do zamknięcia laboratoriów. Jednak dzięki niemu do określenia struktury protein wystarczą gorszej jakości, a więc i łatwiejsze do uzyskania, dane. Możemy się też spodziewać olbrzymiej liczby odkryć, gdyż już w tej chwili dysponujemy olbrzymią liczbą danych, które program będzie mógł wykorzystać. Dodatkową korzyścią jest fakt, że będzie można prowadzić bardziej zaawansowane badania. Nowa generacja biologów molekularnych będzie mogła zadać bardziej złożone pytania. Będą mogli skupić się bardziej na myśleniu niż na prowadzeniu eksperymentów, mówi Lupas.
      Naukowcy mają nadzieję, że dzięki AlphaFold poznamy funkcje tysięcy białek tworzących ludzkie DNA, a to z kolei pozwoli nam poznać przyczyny wielu chorób.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Mutacje w koronawirusach są czymś naturalnym, zachodzić mogą również i u ludzi. Nie ma jeszcze dowodu, że koronawirus zmutował akurat w norkach – komentują w rozmowie z PAP epidemiolodzy weterynaryjni dr Tadeusz Jakubowski i prof. Jan Siemionek.
      Pojawienie się na duńskich fermach koronawirusa, w tym jego niestandardowego wariantu, wpłynęło na decyzję premier Danii Mette Frederiksen o wybiciu wszystkich norek w kraju, bez względu na to, czy są chore czy zdrowe. Okazało się, że decyzja nie ma podstaw prawnych, w związku z czym do dymisji podał się minister ds. żywności Mogens Jensen. Jeszcze jesienią tamtejszy rząd chce jednak uchwalić ustawę pozwalającą na uśmiercenie wszystkich norek.
      Wiadomo już, że na zakażenie wirusem SARS-CoV-2 wrażliwych jest ponad 50 gatunków zwierząt. Wśród nich są m.in. norki, tchórzofretki, koty, psy. I o ile wiadomo, że zwierzęta te mogą być zakażane przez człowieka, to nie ma obecnie dowodów, że człowiek może zakażać się od nich – mówi w rozmowie z PAP epidemiolog weterynaryjny (epizootiolog) dr Tadeusz Jakubowski z Polskiego Związku Hodowców i Producentów Zwierząt Futerkowych, wykładowca SGGW i Uniwersytetu Przyrodniczego w Poznaniu. I wyjaśnia, że SARS-CoV-2 niekoniecznie musi mutować przy przekraczaniu barier międzygatunkowych.
      W Danii pojawiły się opinie, że norki mutują wirusa – mówi naukowiec. I zwraca uwagę, że w opiniach tych nie dodaje się, że wirus może się mutować również u człowieka. A takim zmutowanym wirusem można zakazić norki. Nie ma żadnego dowodu, że norki zakażają człowieka zmutowanym wirusem – zauważa. Dodaje, że takie mutacje mogą równie dobrze zajść przy przenoszeniu się wirusa między ludźmi i to oni mogli tą mutacją zakazić norki. Nie ma dowodów, że kiedykolwiek w przeszłości jakieś choroby przeskakiwały z norek na ludzi. Norka jest jednym z najbezpieczniejszych zwierząt hodowanych jako zwierzęta gospodarskie – uważa ekspert.
      Krajowy specjalista chorób zwierząt futerkowych, epizootiolog dr hab. Jan Siemionek, profesor z Uniwersytetu Warmińsko-Mazurskiego, w rozmowie z PAP przypomina, że SARS-CoV-2 uważa się za tzw. zoonozę, czyli chorobę odzwierzęcą. Przeniosła się ona na ludzi prawdopodobnie z nietoperzy (jeszcze nie wiadomo, jakimi drogami). I zawsze istnieje prawdopodobieństwo, że z człowieka może przenosić się na inny gatunek.
      Tłumaczy jednak, że w koronawirusach zachodzą naturalnie mutacje, niezależnie od tego, czy przenoszą się z jednego gatunku na drugi, czy między osobnikami tego samego gatunku. Zgadza się z opinią dr. Jakubowskiego: Nie ma dowodów, że koronawirus mutował w norkach – mówi.
      W Danii stwierdzono u norek pięć odmian SARS-CoV-2; Duński Statens Serum Institut oznaczył je jako klastry 1–5.
      Prof. Siemionek podsumowuje, że na kilkunastu fermach norek w Holandii i u 12 osób stwierdzono mutacje (tzw. klaster 5 - przyp. PAP), które odbiegają od mutacji występujących najczęściej przy tym wirusie u ludzi. Część naukowców przestraszyła się, że w związku z tą mutacją może dojść do problemów ze skutecznością szczepionki i że zmutowane wirusy u ludzi będą trudniejsze do wykrycia przy zastosowaniu testów antygenowych. Inni naukowcy uważali zaś jednak, że na to dowodów naukowych nie ma. To spowodowało panikę w Danii. I rząd podjął decyzję, obawiając się, że norki mogą stać się tzw. zbiornikiem, rezerwuarem dla utrzymywania się zakażeń covidowych dla ludzi. Premier Danii podjęła decyzję o wybiciu norek ze wszystkich ferm – streszcza prof. Siemionek.
      W czwartek duński resort zdrowia poinformował, że obserwowana na fermach norek mutacja koronawirusa, tzw. klaster 5, prawdopodobnie wyginęła.
      W ocenie dr. Jakubowskiego duńska decyzja o wybiciu norek nie ma podłoża merytorycznego, popartego nauką, ale jest decyzją polityczną. Jak przypomina, rządzące tam partie lewicowe od jakiegoś czasu dążyły do tego, by zlikwidować niektóre hodowle zwierząt. W ocenie dr. Jakubowskiego COVID-19 stał się więc okazją, by szybciej doprowadzić do likwidacji hodowli norek. Jego zdaniem, jeśli parlament duński chce wybić norki, musi stworzyć do tego odpowiednie podstawy prawne.
      Pytany, czy ma uzasadnienie wybijanie norek ze wszystkich ferm, prof. Siemionek odpowiada: Z mojego punktu widzenia to totalny błąd. Jeśli chce się wybijać zwierzęta, trzeba to robić w stadach, gdzie się stwierdziło się coś takiego (zakażenie - przyp. PAP) i monitoruje się je. Zaznacza jednak, że hodowla norek w Danii ma inną specyfikę niż w Polsce - hodowle norek skupione są bowiem w północnej części tamtego niedużego kraju. Ubój dotyczy regionów, gdzie ferma jest przy fermie – mówi. Dodaje, że koncentracja hodowli w jednym miejscu może sprzyjać przenoszeniu się jakiejkolwiek choroby. Zwraca uwagę, że w Polsce takiej koncentracji ferm norek nie ma. Badacz zaznacza, że polskie fermy norek (może poza pewnymi wyjątkami niektórych małych zakładów) to nowoczesne obiekty, na światowym poziomie pod względem bezpieczeństwa biologicznego. Nie ma możliwości wyjścia wirusa poza obręb ferm – ocenia.
      Naukowiec z UWM zauważa jednak, że pracownicy ferm, aby nie stali się dla zwierząt źródłem zakażenia, powinni zachować ostrożność. Poza rękawicami powinni też nosić maski, a u personelu warto kontrolować temperaturę ciała. W przypadku zachorowań u człowieka i norek zaś – być może jego zdaniem warto przeprowadzić screeningowe badania. Zaznacza, że u norek choroba objawia się m.in. dusznością, wymiotami, biegunką. Jeśli u norek wystąpią takie symptomy, właściciel powinien zgłosić się do lekarza weterynarii, a on sam powinien być w kontakcie z Państwowym Instytutem Weterynaryjnym – PIB, który monitoruje zoonozy w Polsce. Badacz apeluje jednak o odpowiedzialne działania, aby w ramach walki z koronawirusem nie doszło do zubożenia kolejnej grupy społecznej – hodowców.
      10 listopada br. polski resort rolnictwa poinformował, że służbom weterynaryjnym zlecono przeprowadzenie badań na fermach norek na obecność koronawirusa u tych zwierząt.
      To eksperyment, a nie badanie urzędowe – komentuje dr Jakubowski. Zaznacza, że powiatowy lekarz weterynarii ma prawo wejść na fermy, bo one są przez niego nadzorowane, ale nie ma podstawy prawnej, aby prowadzić urzędowe badania norek na obecność SARS-CoV-2. Tłumaczy, że SARS-CoV-2 nie jest wpisane na listę chorób zakaźnych w załączniku 2. do Ustawy o ochronie zdrowia zwierząt oraz zwalczaniu chorób zakaźnych zwierząt. A norki nie są wpisane na listę gatunków, za które przysługuje odszkodowanie – w przypadku poddania ich ubojowi przy okazji zwalczania chorób zakaźnych. Skoro zaś norki mogą – jak ok. 50 innych gatunków – zakazić się SARS-CoV-2, należałoby je wpisać do ustawy – uważa naukowiec.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W czerwonym propolisie, zebranym w ulach z brazylijskiego północno-wschodniego wybrzeża, zidentyfikowano 2 nowe substancje o działaniu przeciwnowotworowym. Podczas testów znacząco ograniczały one namnażanie komórek nowotworów jajnika, piersi i mózgu. Wyniki badań naukowców z Uniwersytetów São Paulo i Campinas opublikowano w Journal of Natural Products.
      Dwie z ośmiu substancji wyizolowanych po raz pierwszy z czerwonego propolisu wykazywały właściwości cytotoksyczne w stosunku do komórek nowotworów jajnika, piersi i glejaka. Wykonaliśmy testy in vitro z tymi trzema rodzajami nowotworów, ponieważ są one oporne na działanie wielu różnych leków i z tego powodu trudno je leczyć - opowiada prof. Roberto Berlinck z Uniwersytetu w São Paulo.
      Wg Berlincka, polifenole z czerwonego propolisu są nową klasą związków przeciwnowotworowych; hamują one wzrost guza i wywołują śmierć komórek nowotworowych. W jednym z naszych testów [propolon B i propolonon A] wypadały lepiej od znanego antybiotyku o działaniu cytostatycznym - doksorubicyny. W ramach testów określano działanie cytotoksyczne w stosunku do lekoopornej linii komórkowej raka jajnika.
      Brazylijczycy wyizolowali z czerwonego propolisu propolony (A-D), propolonony (A-C) i propolol A.
      Wcześniej wykazano, że czerwony propolis ma właściwości bakteriobójcze, przeciwgrzybiczne, przeciwzapalne oraz immunomodulacyjne. Pszczoły produkują propolis, by chronić ul, nieprzypadkowo więc żywica [połączona z woskowatą wydzieliną owadów] działa bakteriobójczo i przeciwgrzybicznie. Wspominali o tym wcześniej naukowcy analizujący surowy czerwony propolis. W naszym studium zademonstrowaliśmy przeciwnowotworowe działanie specyficznych związków wyizolowanych z czerwonego propolisu.
      Propolis to połączenie głównie woskowatej wydzieliny owadów i żywicy zebranej z roślin. Ma różną barwę: od czarnej i brązowej, przez czerwoną i żółtą, po zieloną. Jego skład chemiczny jest niezwykle złożony. Polski propolis pochodzi głównie z pączków liściowych topoli czarnej (Populus nigra), brzozy (Betula) oraz olchy (Alnus).
      Czerwony propolis jest rzadszy od zielonego, żółtego czy brązowego. Brazylia należy do największych producentów kitu pszczelego. Czerwony propolis występuje w kilku stanach północno-wschodniej Brazylii. W Alagoas jest wytwarzany przez pszczoły miodne zbierające czerwonawą żywicę Dalbergia ecastaphyllum.
      Chcemy zbadać, jak pszczoły przetwarzają żywicę. Czy ją modyfikują, czy wykorzystują w pierwotnej postaci - podkreśla Berlinck.
      Berlinck dodaje, że polifenole nie są jednak dobrymi kandydatami do rozwoju leków. Niestety, polifenole wiążą się z wieloma rodzajami białek, podczas gdy lek musi obierać na cel specyficzne białko. Być może właśnie dlatego czerwony propolis działa na tak wiele sposobów (wpływa na kilka układów).

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      To prawdziwy przełom. Nie ma już więcej rekordów do pobicia. Padła ostatnia bariera rozdzielczości, mówi Holger Stark z Instytutu Fizyki Biochemicznej im. Maxa Plancka w Göttingen. Stał on na czele jednej z dwóch grup badawczych, które poinformowały o pierwszym w historii zobrazowaniu poszczególnych atomów w proteinie za pomocą mikroskopii krioelektronowej (cryo-EM).
      Osiągnięcie to pokazuje, jak wielkie możliwością stoją przed mikroskopią krioelektronową i umacniają jej pozycję jako narzędzia do mapowania trójwymiarowych kształtów protein. Takie narzędzia pozwalają na dokładne zbadanie struktur białek, a co za tym idzie, lepsze zrozumienie ich funkcjonowania, co z kolei przełoży się na stworzenie lepszych leków o mniejszej liczbie skutków ubocznych.
      Drugą grupą badawczą, które udało się zobrazować atomy w proteinach jest zespół pracujący pod kierunkiem Sjorsa Scheresa i Radu Aricescu z Medical Reasearch Council Laboratory of Molecular Biology (MRC-LMB) w Cambridge w Wielkiej Brytanii.
      Prace Niemców i Brytyjczyków chwali John Rubinstein, biolog z University of Toronto. Rozdzielczość atomowa to prawdziwy przełom, mówi i dodaje, że pozostało jeszcze kilka problemów do rozwiązania, jak np. obrazowanie protein o małej elastyczności. Prace te pokazują, dokąd możemy dojść, jeśli rozwiążemy te problemy, stwierdza.
      Mikroskopia krioelektronowa do licząca sobie dziesiątki lat technika, w której obrazuje się kształt zamrożonych próbek ostrzeliwując je elektronami i rejestrując ich odbicia. Około roku 2013 rozpoczęła się prawdziwa rewolucja. Dzięki coraz doskonalszym technikom wykrywania odbitych elektronów oraz coraz lepszemu oprogramowaniu do analizy, zaczęto uzyskiwać coraz lepszej jakości obraz.
      Z czasem obraz uzyskany z cryo-EM niemal dorównywał jakości obrazowi uzyskiwanemu z rentgenografii strukturalnej. Niemal, więc naukowcy nadal musieli polegać na rentgenografii. Technika ta pozwala na badanie skrystalizowanych protein. Wykonanie analizy wymaga najpierw uzyskania możliwie jak najbardziej regularnego i doskonałego monokryształu badanego związku. Uzyskanie takich kryształów jest czasochłonne. Może trwać wiele miesięcy, a nawet lat. Ponadto wiele protein interesujących z punktu widzenia medycyny nie tworzy kryształów, które można by w ten sposób badać. Croy-EM ma tę zaletę, że wymaga jedynie umieszczenia proteiny w oczyszczonym roztworze.
      Granicą, poza którą można mówić o rozdzielczości atomowej jest około 1,2 angstrema (1,2x10-10 metra). Oba zespoły naukowe, niemiecki i brytyjski, pracowały z apoferrytyną. To niezwykle stabilna proteina, za pomocą której testuje się cryo-EM. Poprzedni rekord obrazowania tej proteiny wynosił 1,54 angstrema.
      Oba zespoły wykorzystały nieco inne techniki, osiągając podobne rezultaty. Niemcy uzyskali rozdzielczość 1,25 A, Brytyjczycy zaś 1,2 A. Stark ocenia, że połączenie obu technik może pozwolić na zwiększenie rozdzielczości do około 1 angstrema, ale to praktycznie nieprzekraczalna granica dla mikroskopii krioelektronowej. Obszar poniżej 1 angstroma jest niemal nieosiągalny dla cro-EM. Uzyskanie takiej rozdzielczości za pomocą najnowocześniejszych dostępnych obecnie urządzeń wymagałoby setek lat rejestracji danych, niewyobrażalnie wielkich mocy obliczeniowych i możliwości przechowywania danych, mówi Stark.
      Scheres i Aricescu przetestowali też swoją technikę na receptorze GABAA. Jeszcze w ubiegłym roku udało im się obrazować ją w rozdzielczości 2,5 angstrema. Tym razem osiągnęli 1,7 A, chociaż w niektórych fragmentach obraz był jeszcze dokładniejszy. To było jak usunięcie przesłony z oczu. Przy tych rozdzielczościach każde pół angstroma otwiera zupełnie nowy wszechświat.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Koronawirus zmutował i obecnie mamy do czynienia z nową, bardziej zaraźliwą i niebezpieczną odmianą, twierdzą naukowcy z Los Alamos National Laboratory (LANL). Pojawiła się ona w Europie na początku lutego. Stamtąd zaczęła się rozprzestrzeniać i pod koniec marca dominowała na całym świecie. Naukowcy ostrzegają, że jeśli epidemia SARS-CoV-2 nie wygaśnie w sezonie letnim, jak ma to miejsce w przypadku grypy sezonowej, może nadal mutować, co znakomicie może utrudnić opracowanie szczepionki.
      To złe wiadomości, mówi główna autorka badań, Bette Korber. Nie powinno nas to jednak zniechęcać. Nasz zespół z LANL udokumentował te mutacja, a było to możliwe dzięki ogólnoświatowemu wysiłkowi naukowców, którzy natychmiast udostępniają genom lokalnie występującego wirusa.
      Przypomnijmy, że na początku marca chińscy naukowcy informowali o zidentyfikowaniu dwóch typów koronawirusa SARS-CoV-2, z których bardziej agresywny powodował 70% infekcji, a starszy i mniej agresywny – 30%. Typ bardziej agresywny miał być też bardziej rozpowszechniony w Wuhan na wczesnych etapach epidemii.
      Teraz naukowcy z Los Alamos, we współpracy z uczonymi z Duke University i brytyjskiego University of Sheffield przeanalizowali tysiące genomów SARS-CoV-2 zebranych przez Global Initiative for Sharing All Influenza Database (GISAID).
      Analizą zajął się zespół, który dotychczas zajmował się tworzeniem bazy danych nt. wirusa HIV. Od dwóch miesięcy specjaliści ci rozwijają narzędzia do śledzenia i analizy SARS-CoV-2 w czasie rzeczywistym. Bo bazy GISAID trafiają obecnie setki genomów koronawirusa dziennie, a eksperci z Los Alamos na bieżąco je analizują.
      Dotychczas zidentyfikowano mutacje w 14 miejscach proteiny S, za pomocą której wirus przyłącza się do komórek. Najbardziej niepokojące są dwie z nich. Są too mutacja D614G, czyli zmiana nukleotydów G na A w pozycji 23403 w szczepie referencyjnym z Wuhan. Z nieznanych obecnie przyczyn wiąże się ona z większą zaraźliwością wirusa. Naukowców martwi też mutacja S943P. Co prawda występuje ona wyłącznie na terenie Belgii, ale wiele wskazuje na to, że jest ona skutkiem rekombinacji. Ten proces wymaga zaś jednoczesnej infekcji organizmu gospodarza dwoma odmiennymi szczepami wirusa.
      Cała praca, wraz ze szczegółowym opisem wszystkich mutacji, została opublikowana w biorxiv [PDF].

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...